Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T12:21:01.588Z Has data issue: false hasContentIssue false

9 - Lasers

from Part II - Advances and challenges

Published online by Cambridge University Press:  23 November 2018

Sergey V. Gaponenko
Affiliation:
National Academy of Sciences of Belarus
Hilmi Volkan Demir
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Applied Nanophotonics , pp. 278 - 341
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Alferov, Z. I. (1998). The history and future of semiconductor heterostructures. Semiconductors, 32, 114.Google Scholar
Carroll, J. E., Whiteaway, J., and Plumb, D. (1998). Distributed Feedback Semiconductor Lasers, vol. 10. IET.Google Scholar
Chow, W. W., and Jahnke, F. (2013). On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron, 37, 109184.Google Scholar
Coleman, J., Young, J., and Garg, A. (2011). Semiconductor quantum dot lasers: a tutorial. J Lightwave Technol, 29, 499510.CrossRefGoogle Scholar
Gmachl, C., Capasso, F., Sivco, D. L., and Cho, A. Y. (2001). Recent progress in quantum cascade lasers and applications. Rep Prog Phys, 64, 15331601.CrossRefGoogle Scholar
Iga, K. (2000). Surface-emitting laser: its birth and generation of new optoelectronics field. IEEE J Sel Top Quantum Electron, 6, 12011215.CrossRefGoogle Scholar
Kazarinov, R. F., and Suris, R. A. (1971). Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys Semicond, 5, 707709.Google Scholar
Kazarinov, R. F., and Suris, R. A. (1972/1973). Injection heterojunction laser with a diffraction grating on its contact surface. Sov Phys Semicond, 6, 1184.Google Scholar
Keller, U. (2010). Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl Phys B: Lasers Opt, 100, 1528.Google Scholar
Ledentsov, N. N., Ustinov, V. M., Shchukin, V. A., et al. (1998). Quantum dot heterostructures: fabrication, properties, lasers (review). Semiconductors, 32, 343365.Google Scholar
Liu, J. M. (2009). Photonic Devices. Cambridge University Press.Google Scholar
Michalzik, R. (ed.) (2013). VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer.Google Scholar
Morthier, G., and Vankwikelberge, P. (2013). Handbook of Distributed Feedback Laser Diodes. Artech House.Google Scholar
Ning, C.-Z. (2010). Semiconductor nanolasers (a tutorial). Phys Status Solidi B, 247, 774788.Google Scholar
Okhotnikov, O. G. (ed.) (2010). Semiconductor Disk Lasers: Physics and Technology. Wiley-VCH.CrossRefGoogle Scholar
Rafailov, E. U. (2014). The Physics and Engineering of Compact Quantum Dot-Based Lasers for Biophotonics. Wiley-VCH.CrossRefGoogle Scholar
Rafailov, E. U., Cataluna, M. A., and Avrutin, E. A. (2011). Ultrafast Lasers Based on Quantum Dot Structures: Physics and Devices. John Wiley & Sons.CrossRefGoogle Scholar
Svelto, O. (1998). Principles of Lasers. Springer-Verlag.Google Scholar
Ustinov, V. M., Zhukov, A. E., Egorov, A. Y., and Maleev, N. A. (2003). Quantum Dot Lasers. Oxford University Press.Google Scholar
Zhukov, A. E., and Kovsh, A. R. (2008). Quantum dot diode lasers for optical communication systems. Quantum Electron, 38, 409423.Google Scholar

References

Altug, H., Englund, D., and Vuckovic, E. (2006). Ultrafast photonic crystal nanocavity laser. Nature Physics, 2, 484488.Google Scholar
Arakawa, Y., and Sakaki, H. (1982). Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 40, 939941.Google Scholar
Bányai, L., and Koch, S. W. (1993). Semiconductor Quantum Dots. World Scientific Publishers.Google Scholar
Bek, R., Kahle, H., Schwarzbäck, T., Jetter, M., and Michler, P. (2013). Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulsesAppl Phys Lett, 103(24), 242101.Google Scholar
Bek, R., Baumgärtner, S., Sauter, F., et al. (2015). Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm. Opt Express, 23, 1994719953.Google Scholar
Butkus, M., Wilcox, K. G., Rautiainen, J., et al. (2009). High-power quantum-dot-based semiconductor disk laser. Opt Lett, 34, 16721674.Google Scholar
Calvez, S., Hastie, J. E., Guina, M., Okhotnikov, O. G., and Dawson, M. D. (2009). Semiconductor disk lasers for the generation of visible and ultraviolet radiation. Laser Photonics Rev, 3(5), 407434.Google Scholar
Casel, O., Woll, D., Tremont, M. A., et al. (2005). Blue 489-nm picosecond pulses generated by intracavity frequency doubling in a passively mode-locked optically pumped semiconductor disk laser. Applied Phys B, 81, 443446.Google Scholar
Cosendey, G., Castiglia, A., Rossbach, G., Carlin, J. F., and Grandjean, N. (2012). Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Appl Phys Lett, 101, 151113.Google Scholar
Dang, C., Lee, J., Breen, C., et al. (2012). Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotechnol, 7, 335339.Google Scholar
Ellis, B., Mayer, M. A., Shambat, G., et al. (2011). Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat Photonics, 5, 297300.Google Scholar
Faist, J., Capasso, F., Sivco, D. L., et al. (1994). Quantum cascade laser. Science, 264(5158), 553556.Google Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.CrossRefGoogle Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.Google Scholar
Germann, T. D., Strittmatter, A., Pohl, J., et al. (2008). High-power semiconductor disk laser based on InAs/GaAs submonolayer quantum dots. Appl Phys Lett, 92, 101123.Google Scholar
Germann, T. D., Strittmatter, A., Pohl, J., et al. (2008). Temperature-stable operation of a quantum dot semiconductor disk laser. Appl Phys Lett, 93, 051104.Google Scholar
Guzelturk, B., Kelestemur, Y., Olutas, M., Delikanli, S., and Demir, H. V. (2014). Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano, 8, 65996605.Google Scholar
Guzelturk, B., Kelestemur, Y., Gungor, K., et al. (2015). Stable and low-threshold optical gain in CdSe/CdS quantum dots: an all-colloidal frequency up-converted laser. Adv Mater, 27, 27412746.Google Scholar
Haglund, E. P., Kumari, S., Westbergh, P., et al. (2015). Silicon-integrated short-wavelength hybrid-cavity VCSEL. Opt Express, 23, 3363433640.CrossRefGoogle ScholarPubMed
Hirose, K., Liang, Y., Kurosaka, Y., et al. (2014). Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat Photonics, 8, 406411.Google Scholar
Hoffmann, M., Sieber, O. D., Wittwer, V. J., et al. (2011). Femtosecond high-power quantum dot vertical external cavity surface emitting laser. Opt Express, 19, 81088116.Google Scholar
Hu, Y. Z., Koch, S. W., and Peyghambarian, N. (1996). Strongly confined semiconductor quantum dots: pair excitations and optical properties. J Luminescence, 70, 185202.Google Scholar
Hugi, A., Maulini, R., and Faist, J. (2010). External cavity quantum cascade laser. Semicond Sci Technol, 25, 083001.Google Scholar
Iga, K. (2008). Vertical-cavity surface-emitting laser: its conception and evolutionJpn J Appl Phys, 47, 111.Google Scholar
Imada, M., Chutinan, A., Noda, S., and Mochizuki, M. (2002). Multidirectionally distributed feedback photonic crystal lasers. Physical Review B, 65, 195306.Google Scholar
Jung, I. D., Brovelli, L. R., Kamp, M., Keller, U., and Moser, M. (1995). Scaling of the antiresonant Fabry–Perot saturable absorber design toward a thin saturable absorberOpt Lett20(14), 15591561.Google Scholar
Kapon, E., and Sirbu, A. (2009). Long-wavelength VCSELs: power-efficient answer. Nat Photonics, 3, 2729.Google Scholar
Kasahara, D., Morita, D., Kosugi, T., et al. (2011). Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Appl Phys Express, 4, 072103.Google Scholar
Kim, J., and Chuang, S. L. (2006). Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J Quantum Electron, 42, 942952.Google Scholar
Klimov, V. I., Ivanov, S. A., Nanda, J., et al. (2007). Single-exciton optical gain in semiconductor nanocrystals. Nature, 447, 441446.Google Scholar
Kogelnik, H., and Shank, C. V. (1971). Stimulated emission in a periodic structure. Appl Phys Lett, 18, 152154.Google Scholar
Lagatsky, A. A., Leburn, C. G., Brown, C. T. A., et al. (2004). Passive mode-locking of a Cr4+: YAG laser by PbS quantum-dot-doped glass saturable absorber. Optics Commun, 241, 449454.Google Scholar
Lagatsky, A. A., Leburn, C. G., Brown, C. T. A., et al. (2010). Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers. Prog Quantum Electron, 34, 145.Google Scholar
Larsson, A. (2011). Advances in VCSELs for communication and sensing. IEEE J Sel Top Quantum Electron, 17,15521567.Google Scholar
Liu, A. Y., Srinivasan, S., Norman, J., Gossard, A. C., and Bowers, J. E. (2015). Quantum dot lasers for silicon photonics. Photonics Res, 3, B1B9.Google Scholar
Loiko, P. A., Rachkovskaya, G. E., Zacharevich, G. B., et al. (2012). Optical properties of novel PbS and PbSe quantum-dot-doped alumino-alkali-silicate glasses. J Non-Cryst Solids, 358, 18401845.Google Scholar
Lott, J. A., Ledentsov, N. N., Ustinov, V. M., et al. (2000). Electron Lett, 36, 13841386.Google Scholar
Maas, D. J. H. C., Bellancourt, A.-R., Rudin, B., et al. (2007). Vertical integration of ultrafast semiconductor lasers. Appl Phys B, 88, 493497.Google Scholar
Malyarevich, A. M., Yumashev, K. V., and Lipovskii, A. A. (2008). Semiconductor-doped glass saturable absorbers for near-infrared solid-state lasersJ Appl Phys, 103(8), 414.CrossRefGoogle Scholar
Mangold, M., Golling, M., Gini, E., Tilma, B. W., and Keller, U. (2015). Sub-300-femtosecond operation from a MIXSEL. Opt Express, 23(17), 2204322059.CrossRefGoogle ScholarPubMed
Nakamura, M., Yariv, A., Yen, H. W., Somekh, S., and Garvin, H. L. (1973). Optically pumped GaAs surface laser with corrugation feedbackAppl Phys Lett22(10), 515516.Google Scholar
Painter, O., Lee, R. K., Scherer, A., et al. (1999). Two-dimensional photonic band-gap defect mode laser. Science, 284, 18191821.Google Scholar
QD Laser, Inc. (2015). Technical Data Laser Diode QLF131 F-P16. www.qdlaser.com (accessed May 1, 2017).Google Scholar
Quarterman, A. H., Wilcox, K. G., Apostolopoulos, V., et al. (2009). A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nat Photonics, 3, 729731.Google Scholar
Rahim, M., Khiar, A., Felder, F., et al. (2010). 5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications. Appl Phys B: Lasers Opt, 100, 261264.Google Scholar
Rudin, B., Wittwer, V. J., Maas, D. J. H. C., et al. (2010). High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. Opt Express, 18, 2758227588.Google Scholar
Scheller, M., Wang, T. L., Kunert, B., et al. (2012). Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power. Electron Lett, 48, 588589.Google Scholar
Seufert, J., Fischer, M., Legge, M., et al. (2004). DFB laser diodes in the wavelength range from 760 nm to 2.5 μm. Spectrochim Acta, Part A, 60, 32433247.Google Scholar
Shchekin, O. B., and Deppe, D. G. (2002). Low-threshold high-T0 1.3-µm InAs quantum-dot lasers due to p-type modulation doping of the active region. IEEE Photon Technol Lett, 14, 12311233.Google Scholar
Siegman, A. E. (1986). Lasers. University Science Books.Google Scholar
Spühler, G. J., Weingarten, K. J., Grange, R., et al. (2005). Semiconductor saturable absorber mirror structures with low saturation fluence. Applied Physics B, 81, 2732.Google Scholar
Svelto, O. (1998). Principles of Lasers. Springer-Verlag.CrossRefGoogle Scholar
Takahashi, T., and Arakawa, Y. (1988). Theoretical analysis of gain and dynamic properties of quantum well box lasers. Optoelectron Dev Technol, 3, 155162.Google Scholar
Tandaechanurat, A., Ishida, S., Guimard, D., et al. (2011). Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nat Photonics, 5, 9194.Google Scholar
Tilma, B. W., Mangold, M., Zaugg, C. A., et al. (2015). Recent advances in ultrafast semiconductor disk lasers. Light Sci Appl, 4, e310.Google Scholar
Ustinov, V. M., Maleev, N. A., Kovsh, A. R., and Zhukov, A. E. (2005). Quantum dot VCSELs. Physica Status Solidi (a), 202, 396402.CrossRefGoogle Scholar
Vandyshev, Y. V., Dneprovskii, V. S., Klimov, V. I., and Okorokov, D. K. (1991). Laser generation in semiconductor quasi-zero-dimensional structure on a transition between size quantization levels. JETP Lett, 54, 441444.Google Scholar
Vurgaftman, I., Weih, R., Kamp, M., et al. (2015). Interband cascade lasers. J Phys D: Appl Phys, 48, 123001.Google Scholar
Weng, G., Mei, Y., Liu, J., et al. (2016). Low threshold continuous-wave lasing of yellow–green InGaN-QD vertical-cavity surface-emitting lasers. Opt Express, 24, 1554615553.Google Scholar
Williams, B. S. (2007). Terahertz quantum-cascade lasers. Nat Photonics, 1, 517525.Google Scholar
Zeller, W., Naehle, L., Fuchs, P., et al. (2010). DFB lasers between 760 nm and 16 µm for sensing applications. Sensors, 10, 24922510.Google Scholar
Zhao, P., Xu, B., van Leeuwen, R., et al. (2014). Compact 4.7 W, 18.3% wall-plug efficiency green laser based on an electrically pumped VECSEL using intracavity frequency doubling. Opt Lett, 39, 47664768.Google Scholar
Zhukov, A. E., and Kovsh, A. R. (2008). Quantum dot diode lasers for optical communication systems. Quantum Electron, 38, 409423.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Lasers
  • Sergey V. Gaponenko, National Academy of Sciences of Belarus, Hilmi Volkan Demir, Nanyang Technological University, Singapore
  • Book: Applied Nanophotonics
  • Online publication: 23 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316535868.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Lasers
  • Sergey V. Gaponenko, National Academy of Sciences of Belarus, Hilmi Volkan Demir, Nanyang Technological University, Singapore
  • Book: Applied Nanophotonics
  • Online publication: 23 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316535868.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Lasers
  • Sergey V. Gaponenko, National Academy of Sciences of Belarus, Hilmi Volkan Demir, Nanyang Technological University, Singapore
  • Book: Applied Nanophotonics
  • Online publication: 23 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316535868.010
Available formats
×