Published online by Cambridge University Press: 05 December 2012
Introduction
Higher-order modes of optical beams have been the subject of many studies over the past 20 years [1, 2]. Because laser resonators deliver in principle quite complex spatial patterns, spatial modes of beams were studied intensively when lasers were first developed [3]. Beams in higher-order spatial modes are solutions of the paraxial wave equation, with Hermite-Gauss and Laguerre-Gauss beams being the most important families of beams. These are solutions of the wave equation in Cartesian and cylindrical coordinates, respectively. The latter beams have been at the heart of a revival of research on higher-order modes due to the orbital angular momentum that they carry [4]. They have also received much attention due to the phase singularities present in their transverse amplitude [5]. Higher-order modes have stimulated much research in the application of forces and torques to objects in optical tweezers [1, 2]. Their usefulness has carried higher-order spatial modes further into new paths, in studies with non-classical sources of light and applications in quantum information [6].
The beams mentioned above are scalar solutions of the wave equation and thus independent of the polarization of the light. Vector beams are formed by the non-separable combinations of spatial and polarization modes. This enhanced modal space produces an interesting set of beams that offer new effects and applications. The origin of these beams is not recent either, as the possibility of combining higher-order spatial modes and polarization started with those early studies of modes as well.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.