Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-08T08:06:17.827Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  21 February 2018

G. J. Tallents
Affiliation:
University of York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ackermann, W., Asova, G., Ayvazyan, et al. 2007. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics, 1(6), 336–342.CrossRefGoogle Scholar
[2]Alexander, D. R., and Ferguson, J. W. 1994. Low-temperature Rosseland opacities. Astrophys. J., 437, 879–891.CrossRefGoogle Scholar
[3]Aslanyan, V., and Tallents, G. J. 2014. Local thermodynamic equilibrium in rapidly heated high energy density plasmas. Phys. Plasmas, 21(6), 062702.CrossRefGoogle Scholar
[4]Attwood, D. 2000. Soft X-rays and extreme ultraviolet radiation: principles and applications. Cambridge University Press, Cambridge, UK.Google Scholar
[5]Atzeni, S., and Meyer-ter-Vehn, J. 2009. The physics of inertial fusion. Oxford University Press, Oxford, UK.Google Scholar
[6]Bailey, J. E., Nagayama, T., Loisel, G. P. et al. 2015. A higher-than-predicted measurement of iron opacity at solar interior temperatures. Nature, 517(7532), 56–59.CrossRefGoogle ScholarPubMed
[7]Bar-Shalom, A., Klapisch, M., and Oreg, J. 2001. HULLAC, an integrated computer package for atomic processes in plasmas. J. Quant. Spect. Rad. Trans., 71, 169–188.CrossRefGoogle Scholar
[8]Bates, D. R., Kingston, A. E., and McWhirter, R. W. P. 1962. Recombination between electrons and atomic ions 1. Optically thin plasmas. Proc. R. Soc. A, 267, 297–312.CrossRefGoogle Scholar
[9]Bernstein, J., and Dyson, F. 2003. Opacity bounds. Publ. Astron. Soc. Pac., 115(814), 1383–1387.CrossRefGoogle Scholar
[10]Blitz, L., and Spergel, D. N. 1991. The shape of the galaxy. Astrophys. J., 370, 205–224.CrossRefGoogle Scholar
[11]Boiko, V. A., Faenov, A. Y., and Pikuz, S. A. 1978. X-ray spectroscopy of multiplycharged ions from laser plasmas. J. Quant. Spect. Rad. Trans., 19, 11–50.CrossRefGoogle Scholar
[12]Boiko, V. A., Pikuz, S. A., and Faenov, A. Y. 1979. The determination of laser plasma electron density by K spectra of multicharged ions. J. Phys. B., 12, 1889–1910.CrossRefGoogle Scholar
[13]Bombarda, F., Giannella, R., Kallne, et al. 1988. Observations and comparisons with theory of the heliumlike and hydrogenlike resonance lines and satellites of nickel from the JET tokamak. Phys. Rev. A, 37, 504–522.CrossRefGoogle ScholarPubMed
[14]Burgess, A., and Tully, J. A. 1978. On the Bethe approximation. J. Phys. B, 11, 4271–4282.CrossRefGoogle Scholar
[15]Campbell, G., Conn, R. W., and Shoji, T. 1991 (Feb. 5). High density plasma deposition and etching apparatus. US Patent 4,990,229.
[16]Chandrasekhar, S. 1930. The ionization formula and the new statistics. Phil. Mag., 9, 292–299.CrossRefGoogle Scholar
[17]Chen, F. F. 1984. Plasma physics and controlled fusion. Plenum, New York, US.CrossRefGoogle Scholar
[18]Chung, H. K., Chen, M. H., Morgan, W. L., Ralchenko, Y., and Lee, R. W. 2005. FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energ. Dens. Phys., 1, 3–12.CrossRefGoogle Scholar
[19]Ciricosta, O., Vinko, S. M., Barbrel, et al. 2016. Measurements of continuum lowering in solid-density plasmas created from elements and compounds. Nat. Commun., 7, 11713.CrossRefGoogle ScholarPubMed
[20]Colvin, J., and Larsen, J. 2014. Extreme physics: properties and behavior of matter at extreme conditions. Cambridge University Press, Cambridge, UK.Google Scholar
[21]Crowley, B. J. B. 2014. Continuum lowering – a new perspective. High Energ. Dens. Phys., 13, 84–102.CrossRefGoogle Scholar
[22]Crowley, B. J. B., and Harris, J. W. 2001. Modelling of plasmas in an average-atom local density approximation: the CASSANDRA code. J. Quant. Spec. Rad. Trans., 71, 257–272.CrossRefGoogle Scholar
[23]Dendy, R. O. 1990. Plasma dynamics. Oxford Science Publications, Oxford, UK.Google Scholar
[24]Dere, K. P., Landi, E., Mason, H. E., Fossi, B. C. M., and Young, P. R. 1997. CHIANTI – an atomic database for emission lines I. Wavelengths greater than 50 Angstrom. Astron. Astrophys. Suppl. Ser., 125, 149–173.CrossRefGoogle Scholar
[25]Dicke, R. H. 1953. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev., 89, 472–473.CrossRefGoogle Scholar
[26]Dirac, P. A. M. 1948. The principles of quantum mechanics. Clarendon Press, Oxford, UK.Google Scholar
[27]Djaoui, A., and Rose, S. J. 1992. Calculation of the time-dependent excitation and ionization in a laser-produced plasma. J. Phys. B, 25, 2745–2762.CrossRefGoogle Scholar
[28]Drake, R. P. 2006. High-energy-density physics. Springer, Berlin, Germany.Google Scholar
[29]El-Naschie, M. S. 2014. Casimir-like energy as a double Eigenvalues of quantumly entangled system leading to the missing dark energy density of the cosmos. Int. J. High Energy Phys., 1(5), 55–63.CrossRefGoogle Scholar
[30]Emma, P., Akre, R., Arthur, et al. 2010. First lasing and operation of an angstromwavelength free-electron laser. Nat. Photonics, 4, 641–647.CrossRefGoogle Scholar
[31]Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., and Verner, E.M. 1998. CLOUDY 90: numerical simulation of plasmas and their spectra. Publ. Astron. Soc. Pac., 110, 761–778.CrossRefGoogle Scholar
[32]Fletcher, L. B., Kritcher, A. L., Pak, A. et al. 2014. Observations of continuum depression in warm dense matter with X-ray Thomson scattering. Phys. Rev. Lett., 112, 145004.CrossRefGoogle ScholarPubMed
[33]Florescu-Mitchella, A. I., and Mitchel, J. B. A. 2006. Dissociative recombination. Phys. Rep., 430, 277.Google Scholar
[34]Forslund, D. W., Kindel, J. M., Lee, K., Lindman, E. L., and Morse, R. L. 1975. Theory and simulation of resonant absorption in a hot plasma. Phys. Rev. A, 11(Feb.), 679–683.CrossRefGoogle Scholar
[35]Freidberg, J. P. 2007. Plasma physics and fusion energy. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[36]Fridman, A. 2008. Plasma chemistry. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[37]Gabriel, A. H. 1972. Dielectronic satellite spectra for highly-charged helium-like lines. Monthly Not. R. Astron. Soc., 160, 99–119.Google Scholar
[38]Griem, H. R. 1997. Principles of plasma spectroscopy. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[39]Gu, M. F. 2008. The flexible atomic code. Can. J. Phys., 86, 675–689.CrossRefGoogle Scholar
[40]Guillot, T. 1999. Interiors of giant planets inside and outside the solar system. Science, 286, 72–77.CrossRefGoogle ScholarPubMed
[41]Guzman, F., O'Mullane, M., and Summers, H. P. 2013. ADAS tools for collisionalradiative modelling of molecules. J. Nucl. Mater., 438, S585.CrossRefGoogle Scholar
[42]Haan, S. W., Lindl, J. D., Callahan, D. A. et al. 2011. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas, 18, 051001.CrossRefGoogle Scholar
[43]Haken, H., and Wolf, H. C. 1994. The physics of atoms and quanta. Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
[44]Hammer, J. H., and Rosen, M. D. 2003. A consistent approach to solving the radiation diffusion equation. Phys. Plasmas, 10, 1829–1845.CrossRefGoogle Scholar
[45]Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Scott, R. A. 1968. Observation of a rapidly pulsating radio source. Nature, 217, 709–713.CrossRefGoogle Scholar
[46]Hill, E. G., and Rose, S. J. 2012. Modelling of Silicon in inertial confinement fusion conditions. High Energ. Dens. Phys., 8, 307–312.CrossRefGoogle Scholar
[47]Hirata, C. M. 1992. Wouthuysen-Field coupling strength and application to highredshift 21-cm radiation. Mon. Note. R. Astron. Soc., 367, 259–274.Google Scholar
[48]Hoarty, D. J., Allan, P., James, S. F. et al. 2013. Observations of the effect of ionization-potential depression in hot dense plasma. Phys. Rev. Lett., 110(26), 265003.CrossRefGoogle ScholarPubMed
[49]Hughes, T. P. 1975. Plasma and laser light. Institute of Physics, Bristol, UK.Google Scholar
[50]Hurricane, O. A., Callahan, D. A., Casey, D. T. et al. 2014. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343–348.CrossRefGoogle Scholar
[51]Hutchinson, I. H. 2002. Principles of plasma diagnostics. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[52]Ichimaru, S. 1982. Strongly coupled plasmas – high density classical plasmas and degenerate electron liquids. Rev. Mod. Phys., 54(4), 1017–1059.CrossRefGoogle Scholar
[53]Iglesias, C. A. 2015. Enigmatic photon absorption in plasmas near solar interior conditions. High Energ. Dens. Phys., 15(Jun), 4–7.CrossRefGoogle Scholar
[54]Irons, F. E. 1979. The escape factor in plasma spectroscopy I. The escape factor defined and evaluated. J. Quant. Spect. Rad. Trans., 22, 1–20.CrossRefGoogle Scholar
[55]Ishikawa, T., Aoyagi, H., Asaka, T. et al. 2012. A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photonics, 6(8), 540–544.CrossRefGoogle Scholar
[56]Janicki, C. 1990. A computer program for the free-free and bound-free Gaunt factors of Rydberg systems. Comput. Phys. Commun., 60, 281.CrossRefGoogle Scholar
[57]Karzas, W. J., and Latter, R. 1961. Electron radiative transitions in a coulomb field. Astrophys. J. Suppl. V, 55, 167.Google Scholar
[58]Keldysh, L. V. 1965. Ionization in field of a strong electromagentic wave. Sov. Phys. JETP, 20, 1307.Google Scholar
[59]Killiana, T. C., Pattard, T., Pohl, T. et al. 2007. Ultracold neutral plasmas. Phys. Rep., 449, 77–130.Google Scholar
[60]Kim, Y., and Rudd, M. E. 1994. Binary encounter dipole model for electron-impact ionization. Phys. Rev. A., 50, 3954–3967.CrossRefGoogle ScholarPubMed
[61]Kohn, W. 1999. Nobel lecture: electronic structure of matterwave functions and density functionals. Rev. Mod. Phys., 71, 1253–1266.CrossRefGoogle Scholar
[62]Kramers, H. A. 1923. On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag., 46, 836–871.CrossRefGoogle Scholar
[63]Kramida, A., Ralchenko, Y., Reader, J., and NIST ASD Team. 2015. NIST Atomic Spectra Database (ver. 5.3). Available: http://physics.nist.gov/asd (accessed 13 April 2017). National Institute of Standards and Technology, Gaithersburg, MD.
[64]Lamoreaux, S. K. 1997. Demonstration of the Casimir force in the 0.6 to 6 mm Range. Phys. Rev. Lett., 78, 5–8.CrossRefGoogle Scholar
[65]Larsen, J. 2017. Foundations of high energy density physics. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[66]Lindl, J. D. 1995. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933–4024.CrossRefGoogle Scholar
[67]Lindl, J. D., Amendt, P., Berger, R. L. et al. 2004. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339–491.CrossRefGoogle Scholar
[68]Lotz, W. 1967. An empirical formula for the electron-impact ionization crosssection. Z. Physik, 206, 205–211.CrossRefGoogle Scholar
[69]Loudon, R. 1983. The quantum theory of light. Oxford University Press, Oxford, UK.Google Scholar
[70]Marchand, E. W. 1978. Gradient index optics. Academic Press, New York, US.Google Scholar
[71]Marjoribanks, R. S., Richardson, M. C., Jaanimagi, P. A., and Epstein, R. 1992. Electron-temperature measurement in laser-produced plasmas by the ratio of isoelectronic line intensities. Phys. Rev. A., 46, R1747–R1750.CrossRefGoogle ScholarPubMed
[72]Massey, H. S. W., and Burhop, E. H. S. 1952. Electronic and ionic impact phenomena. Clarendon Press, Oxford, UK.Google Scholar
[73]Menzel, D. H., and Pekeris, C. L. 1935. Absorption coefficients and hydrogen line intensities. Monthly Not. R. Astron. Soc., 96(1), 0077–0111.Google Scholar
[74]Morales, M. F., and Wyithe, J. S. B. 2010. Reionization and cosmology with 21-cm fluctuations. Ann. Rev. Astron. Astrophys., 48, 121–171.CrossRefGoogle Scholar
[75]Mott, N.F., and Massey, H.S.W. 1949. The theory of atomic collisions. Clarendon Press, Oxford, UK.Google Scholar
[76]Nagler, B., Zastrau, U., Faeustlin, R. R. et al. 2009. Turning solid aluminium transparent by intense soft X-ray photoionization. Nat. Phys., 5(9), 693–696.Google Scholar
[77]Nikiforov, A. F., Novikov, V. G., and Uvarov, V. B. 2005. Quantum statistical models of hot dense matter. Birkhauser, Basel, Switzerland.CrossRefGoogle Scholar
[78]Pal'chikov, V. G. 1998. Relativistic transition probabilities and oscillator strengths in hydrogen-like atoms. Phys. Scr., 57, 581–593.Google Scholar
[79]Parail, V., Belo, P., Boerner, P. et al. 2009. Integrated modelling of ITER reference scenarios. Nuclear Fusion, 49(7), 075030.CrossRefGoogle Scholar
[80]Paris, A., and Davies, E. 2015. Hydrogen clouds from comets 266/P Christensen and P/2008 Y2 (Gibbs) are candidates for the source of the 1977 WOW signal. Washington Acad. Sci., 25–31.
[81]Peacock, N. J., Robinson, D. C., Forrest, M. J., Wilcock, P. D., and Sannikov, V. V. 1969. Measurement of the Electron Temperature by Thomson Scattering in Tokamak T3. Nature, 224, 488–490.CrossRefGoogle Scholar
[82]Pert, G. J. 1978. The analytic theory of linear resonant absorption. Plasma Phys., 20, 175–188.CrossRefGoogle Scholar
[83]Pert, G. J. 1990. Models of collisional-radiative recombination. J. Phys. B., 23, 619–650.CrossRefGoogle Scholar
[84]Pert, G. J. 2013. Introductory fluid mechanics for physicists and mathematicians. Wiley, Oxford, UK.Google Scholar
[85]Phillips, K. J. H. 2004. The solar flare 3.8–10 keV X-ray spectrum. Astrophys. J., 605, 921–930.CrossRefGoogle Scholar
[86]Pradhan, A. K., and Nahar, S. N. 2011. Atomic astrophysics and spectroscopy. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[87]Purcell, E. M. 1985. Electricity and magnetism. McGraw-Hill, New York, US.Google Scholar
[88]McWhirter, R. W. P. 1965. Plasma diagnostic techniques. Edited by Huddlestone, R. H., and Leonard, S. L. Academic Press, New York, US.Google Scholar
[89]Ralchenko, Y. 2016. Modern methods in collisional-radiative modeling of plasmas. Springer, Berlin, Germany.CrossRefGoogle Scholar
[90]Randewich, A., and Danson, C. 2014. High energy density physics at the Atomic Weapons Establishment. High Power Laser Sci. Eng., 2, e40.CrossRefGoogle Scholar
[91]Rocca, J. J. 1999. Table-top soft X-ray lasers. Rev. Sci. Instrum., 70(10), 3799–3827.CrossRefGoogle Scholar
[92]Rutherford, E. 1911. The scattering of α and β particles by matter and the structure of the atom. Phil. Mag., 21, 669.CrossRefGoogle Scholar
[93]Rybicki, G. B., and Lightman, A. P. 1979. Radiative processes in astrophysics. Wiley-Interscience, New York, US.Google Scholar
[94]Sagan, C., Sagan, L. S., and Drake, F. 1972. A message from Earth. Science, 175, 881–884.CrossRefGoogle ScholarPubMed
[95]Salzmann, D. 1998. Atomic physics in hot plasmas. Oxford University Press, Oxford, UK.Google Scholar
[96]Sampson, D. H., and Zhang, H. L. 1992. Use of the van Regemorter formula for collision strengths or cross sections. Phys. Rev., A45, 1556.Google Scholar
[97]Samukawa, S., Hori, M., Rauf, S. et al. 2012. The 2012 Plasma Roadmap. J. Phys. D., 45, 253001.Google Scholar
[98]Schawlow, A. L. 1984. Lasers in historical perspective. IEEE J. Quant. Electron., QE-20, 558.CrossRefGoogle Scholar
[99]Sheffield, J., Froula, D., Glenzer, S. H., and Luhmann, N. C. 2011. Plasma scattering of electromagnetic radiation: theory and measurement techniques. Academic Press, Amsterdam, The Netherlands.Google Scholar
[100]Smith, R., Tallents, G. J., Zhang, J. et al. 1999. Saturation behavior of two X-ray lasing transitions in Ni-like Dy. Phys. Rev. A, 59(1), R47–R50.CrossRefGoogle Scholar
[101]Smith, R. K., Brickhouse, N. S., Liedahl, D. A, and Raymond, J. C. 2001. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J., 556, L91–L95.CrossRefGoogle Scholar
[102]Sobelman, I. I., and Vainshtein, L. A. 1998. Excitation of atoms and broadening of spectral lines. Springer, Berlin, Germany.Google Scholar
[103]Stenzel, R. L. 1999. Whistler waves in space and laboratory plasma. J. Geophys. Res., 104, 14379–14396.CrossRefGoogle Scholar
[104]Stewart, J. C., and Pyatt, K. D. 1966. Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203.CrossRefGoogle Scholar
[105]Tallents, G., Wagenaars, E., and Pert, G. 2010. Optical lithography: lithography at EUV wavelengths. Nat. Photonics, 4(12), 809–811.CrossRefGoogle Scholar
[106]Tallents, G. J. 1980. An experimental study of recombination in a laser-produced plasma. Plasma Phys., 22, 709–718.CrossRefGoogle Scholar
[107]Tallents, G. J. 1984. The relative intensities of hydrogen-like fine structure. J. Phys. B., 17, 3677–3691.Google Scholar
[108]Tallents, G. J. 2003. The physics of soft X-ray lasers pumped by electron collisions in laser plasmas. J. Phys. D., 366, R259–R276.Google Scholar
[109]Tallents, G. J. 2016. Free electron degeneracy effects on collisional excitation, ionization, de-excitation and three-body recombination. High Energ. Dens. Phys., 20(9), 9–16.CrossRefGoogle Scholar
[110]Tallents, G. J., Wilson, S. A., West, A., Aslanyan, V., Lolley, J., and Rossall, A. K. 2017. The creation of radiation dominated plasmas using laboratory extreme ultraviolet lasers. High Energ. Dens. Phys., 23(3), 129–132.CrossRefGoogle Scholar
[111]Tennyson, J. 2011. Astronomical spectroscopy: an introduction to the atomic and molecular physics of astronomical spectra. World Scientific, Singapore.CrossRefGoogle Scholar
[112]Trumper, J., Poetscj, W., Reppin, C., Voges, W., Staubert, R., and Kendziorra, E. 1978. Evidence for strong cyclotron line emission in hard X-ray spectrum of Hercules X1. Astrophys. J., 219(3), L105–L110.Google Scholar
[113]Tseng, W. L., Johnson, R. E., Thomsen, M. F., Cassidy, T. A., and Elrod, M. K. 2011. Neutral H2 and H+ 2 ions in the Saturnian magnetosphere. J. Geophys. Res., 116, A03209.CrossRefGoogle Scholar
[114]Abels-van Maanen, A. E. P. M. 1985. A package for non-coronal impurity data. JET-DN-T (85)29.Google Scholar
[115]van Regemorter, H. 1962. Rate of collisional excitation in stellar atmospheres. Astrophys. J., A132, 906.CrossRefGoogle Scholar
[116]Vinko, S. M., Ciricosta, O., Cho, B. I. et al. 2012. Creation and diagnosis of a soliddensity plasma with an X-ray free-electron laser. Nature, 482(7383), 59–62.CrossRefGoogle ScholarPubMed
[117]Vinko, S. M., Ciricosta, O., and Wark, J. S. 2014. Density functional theory calculations of continuum lowering in strongly coupled plasmas. Nat. Commun., 5, 3533.CrossRefGoogle ScholarPubMed
[118]von Frisch, K. 1967. The dance language and orientation of bees. Harvard University Press, Cambridge, MA, US.Google Scholar
[119]Walter, F., Brinks, E., de Blok, W. J. G. et al. 2008. THINGS: the H1 nearby galaxy survey. Astron. J., 136, 2563–2647.CrossRefGoogle Scholar
[120]Wang, W. 1999. Generalization of the Thomas-Rieche-Kuhn and the Bethe sum rules. Phys. Rev. A, 60, 262–266.CrossRefGoogle Scholar
[121] NASA. Voyager: the interstellar mission, http://voyager.jpl.nasa.gov/spacecraft/ goldenrec1.html (accessed 8 March 2017).
[122]Weinert, F. 1995. Wrong theory-right experiment: the significance of the Stern– Gerlach experiments. Studies in History and Philosophy Mod. Phys., 26, 75–86.CrossRefGoogle Scholar
[123]Wing, W. H., Ruff, G. A., Lamb, W. E., and Spezeski, J. J. 1976. Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett., 36, 1488–1491.CrossRefGoogle Scholar
[124]Zel'dovich, Ya. B., and Raizer, Yu. P. 1967. Physics of shock waves and high temperature hydrodynamic phenomena. Academic, New York, US.Google Scholar
[125]Zhang, J., MacPhee, A. G., Lin, J. et al. 1997. A saturated X-ray laser beam at 7 nanometers. Science, 276(5315), 1097–1100.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • G. J. Tallents, University of York
  • Book: An Introduction to the Atomic and Radiation Physics of Plasmas
  • Online publication: 21 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781108303538.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • G. J. Tallents, University of York
  • Book: An Introduction to the Atomic and Radiation Physics of Plasmas
  • Online publication: 21 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781108303538.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • G. J. Tallents, University of York
  • Book: An Introduction to the Atomic and Radiation Physics of Plasmas
  • Online publication: 21 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781108303538.016
Available formats
×