[1]Ackermann, W., Asova, G., Ayvazyan, et al. 2007. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics, 1(6), 336–342.
[2]Alexander, D. R., and Ferguson, J. W.
1994. Low-temperature Rosseland opacities. Astrophys. J., 437, 879–891.
[3]Aslanyan, V., and Tallents, G. J.
2014. Local thermodynamic equilibrium in rapidly heated high energy density plasmas. Phys. Plasmas, 21(6), 062702.
[4]Attwood, D.
2000. Soft X-rays and extreme ultraviolet radiation: principles and applications. Cambridge University Press, Cambridge, UK.
[5]Atzeni, S., and Meyer-ter-Vehn, J.
2009. The physics of inertial fusion. Oxford University Press, Oxford, UK.
[6]Bailey, J. E., Nagayama, T., Loisel, G. P. et al. 2015. A higher-than-predicted measurement of iron opacity at solar interior temperatures. Nature, 517(7532), 56–59.
[7]Bar-Shalom, A., Klapisch, M., and Oreg, J.
2001. HULLAC, an integrated computer package for atomic processes in plasmas. J. Quant. Spect. Rad. Trans., 71, 169–188.
[8]Bates, D. R., Kingston, A. E., and McWhirter, R. W. P.
1962. Recombination between electrons and atomic ions 1. Optically thin plasmas. Proc. R. Soc. A, 267, 297–312.
[9]Bernstein, J., and Dyson, F.
2003. Opacity bounds. Publ. Astron. Soc. Pac., 115(814), 1383–1387.
[10]Blitz, L., and Spergel, D. N.
1991. The shape of the galaxy. Astrophys. J., 370, 205–224.
[11]Boiko, V. A., Faenov, A. Y., and Pikuz, S. A.
1978. X-ray spectroscopy of multiplycharged ions from laser plasmas. J. Quant. Spect. Rad. Trans., 19, 11–50.
[12]Boiko, V. A., Pikuz, S. A., and Faenov, A. Y.
1979. The determination of laser plasma electron density by K spectra of multicharged ions. J. Phys. B., 12, 1889–1910.
[13]Bombarda, F., Giannella, R., Kallne, et al. 1988. Observations and comparisons with theory of the heliumlike and hydrogenlike resonance lines and satellites of nickel from the JET tokamak. Phys. Rev. A, 37, 504–522.
[14]Burgess, A., and Tully, J. A.
1978. On the Bethe approximation. J. Phys. B, 11, 4271–4282.
[15]Campbell, G., Conn, R. W., and Shoji, T.
1991 (Feb. 5). High density plasma deposition and etching apparatus. US Patent 4,990,229.
[16]Chandrasekhar, S.
1930. The ionization formula and the new statistics. Phil. Mag., 9, 292–299.
[17]Chen, F. F.
1984. Plasma physics and controlled fusion. Plenum, New York, US.
[18]Chung, H. K., Chen, M. H., Morgan, W. L., Ralchenko, Y., and Lee, R. W.
2005. FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energ. Dens. Phys., 1, 3–12.
[19]Ciricosta, O., Vinko, S. M., Barbrel, et al. 2016. Measurements of continuum lowering in solid-density plasmas created from elements and compounds. Nat. Commun., 7, 11713.
[20]Colvin, J., and Larsen, J.
2014. Extreme physics: properties and behavior of matter at extreme conditions. Cambridge University Press, Cambridge, UK.
[21]Crowley, B. J. B.
2014. Continuum lowering – a new perspective. High Energ. Dens. Phys., 13, 84–102.
[22]Crowley, B. J. B., and Harris, J. W.
2001. Modelling of plasmas in an average-atom local density approximation: the CASSANDRA code. J. Quant. Spec. Rad. Trans., 71, 257–272.
[23]Dendy, R. O.
1990. Plasma dynamics. Oxford Science Publications, Oxford, UK.
[24]Dere, K. P., Landi, E., Mason, H. E., Fossi, B. C. M., and Young, P. R.
1997. CHIANTI – an atomic database for emission lines I. Wavelengths greater than 50 Angstrom. Astron. Astrophys. Suppl. Ser., 125, 149–173.
[25]Dicke, R. H.
1953. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev., 89, 472–473.
[26]Dirac, P. A. M.
1948. The principles of quantum mechanics. Clarendon Press, Oxford, UK.
[27]Djaoui, A., and Rose, S. J.
1992. Calculation of the time-dependent excitation and ionization in a laser-produced plasma. J. Phys. B, 25, 2745–2762.
[28]Drake, R. P.
2006. High-energy-density physics. Springer, Berlin, Germany.
[29]El-Naschie, M. S.
2014. Casimir-like energy as a double Eigenvalues of quantumly entangled system leading to the missing dark energy density of the cosmos. Int. J. High Energy Phys., 1(5), 55–63.
[30]Emma, P., Akre, R., Arthur, et al. 2010. First lasing and operation of an angstromwavelength free-electron laser. Nat. Photonics, 4, 641–647.
[31]Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., and Verner, E.M. 1998. CLOUDY 90: numerical simulation of plasmas and their spectra. Publ. Astron. Soc. Pac., 110, 761–778.
[32]Fletcher, L. B., Kritcher, A. L., Pak, A. et al. 2014. Observations of continuum depression in warm dense matter with X-ray Thomson scattering. Phys. Rev. Lett., 112, 145004.
[33]Florescu-Mitchella, A. I., and Mitchel, J. B. A.
2006. Dissociative recombination. Phys. Rep., 430, 277.
[34]Forslund, D. W., Kindel, J. M., Lee, K., Lindman, E. L., and Morse, R. L.
1975. Theory and simulation of resonant absorption in a hot plasma. Phys. Rev. A, 11(Feb.), 679–683.
[35]Freidberg, J. P.
2007. Plasma physics and fusion energy. Cambridge University Press, Cambridge, UK.
[36]Fridman, A.
2008. Plasma chemistry. Cambridge University Press, Cambridge, UK.
[37]Gabriel, A. H.
1972. Dielectronic satellite spectra for highly-charged helium-like lines. Monthly Not. R. Astron. Soc., 160, 99–119.
[38]Griem, H. R.
1997. Principles of plasma spectroscopy. Cambridge University Press, Cambridge, UK.
[39]Gu, M. F.
2008. The flexible atomic code. Can. J. Phys., 86, 675–689.
[40]Guillot, T.
1999. Interiors of giant planets inside and outside the solar system. Science, 286, 72–77.
[41]Guzman, F., O'Mullane, M., and Summers, H. P.
2013. ADAS tools for collisionalradiative modelling of molecules. J. Nucl. Mater., 438, S585.
[42]Haan, S. W., Lindl, J. D., Callahan, D. A. et al. 2011. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas, 18, 051001.
[43]Haken, H., and Wolf, H. C.
1994. The physics of atoms and quanta. Berlin, Heidelberg: Springer Berlin Heidelberg.
[44]Hammer, J. H., and Rosen, M. D.
2003. A consistent approach to solving the radiation diffusion equation. Phys. Plasmas, 10, 1829–1845.
[45]Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Scott, R. A.
1968. Observation of a rapidly pulsating radio source. Nature, 217, 709–713.
[46]Hill, E. G., and Rose, S. J.
2012. Modelling of Silicon in inertial confinement fusion conditions. High Energ. Dens. Phys., 8, 307–312.
[47]Hirata, C. M.
1992. Wouthuysen-Field coupling strength and application to highredshift 21-cm radiation. Mon. Note. R. Astron. Soc., 367, 259–274.
[48]Hoarty, D. J., Allan, P., James, S. F. et al. 2013. Observations of the effect of ionization-potential depression in hot dense plasma. Phys. Rev. Lett., 110(26), 265003.
[49]Hughes, T. P.
1975. Plasma and laser light. Institute of Physics, Bristol, UK.
[50]Hurricane, O. A., Callahan, D. A., Casey, D. T. et al. 2014. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343–348.
[51]Hutchinson, I. H.
2002. Principles of plasma diagnostics. Cambridge University Press, Cambridge, UK.
[52]Ichimaru, S.
1982. Strongly coupled plasmas – high density classical plasmas and degenerate electron liquids. Rev. Mod. Phys., 54(4), 1017–1059.
[53]Iglesias, C. A.
2015. Enigmatic photon absorption in plasmas near solar interior conditions. High Energ. Dens. Phys., 15(Jun), 4–7.
[54]Irons, F. E.
1979. The escape factor in plasma spectroscopy I. The escape factor defined and evaluated. J. Quant. Spect. Rad. Trans., 22, 1–20.
[55]Ishikawa, T., Aoyagi, H., Asaka, T. et al. 2012. A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photonics, 6(8), 540–544.
[56]Janicki, C.
1990. A computer program for the free-free and bound-free Gaunt factors of Rydberg systems. Comput. Phys. Commun., 60, 281.
[57]Karzas, W. J., and Latter, R.
1961. Electron radiative transitions in a coulomb field. Astrophys. J. Suppl. V, 55, 167.
[58]Keldysh, L. V.
1965. Ionization in field of a strong electromagentic wave. Sov. Phys.
JETP, 20, 1307.
[59]Killiana, T. C., Pattard, T., Pohl, T. et al. 2007. Ultracold neutral plasmas. Phys. Rep., 449, 77–130.
[60]Kim, Y., and Rudd, M. E.
1994. Binary encounter dipole model for electron-impact ionization. Phys. Rev. A., 50, 3954–3967.
[61]Kohn, W.
1999. Nobel lecture: electronic structure of matterwave functions and density functionals. Rev. Mod. Phys., 71, 1253–1266.
[62]Kramers, H. A.
1923. On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag., 46, 836–871.
[63]Kramida, A., Ralchenko, Y., Reader, J., and NIST ASD Team. 2015. NIST Atomic Spectra Database (ver. 5.3). Available: http://physics.nist.gov/asd (accessed 13 April 2017). National Institute of Standards and Technology, Gaithersburg, MD.
[64]Lamoreaux, S. K.
1997. Demonstration of the Casimir force in the 0.6 to 6 mm Range. Phys. Rev. Lett., 78, 5–8.
[65]Larsen, J.
2017. Foundations of high energy density physics. Cambridge University Press, Cambridge, UK.
[66]Lindl, J. D.
1995. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933–4024.
[67]Lindl, J. D., Amendt, P., Berger, R. L. et al. 2004. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339–491.
[68]Lotz, W.
1967. An empirical formula for the electron-impact ionization crosssection. Z. Physik, 206, 205–211.
[69]Loudon, R.
1983. The quantum theory of light. Oxford University Press, Oxford, UK.
[70]Marchand, E. W.
1978. Gradient index optics. Academic Press, New York, US.
[71]Marjoribanks, R. S., Richardson, M. C., Jaanimagi, P. A., and Epstein, R.
1992. Electron-temperature measurement in laser-produced plasmas by the ratio of isoelectronic line intensities. Phys. Rev. A., 46, R1747–R1750.
[72]Massey, H. S. W., and Burhop, E. H. S.
1952. Electronic and ionic impact phenomena. Clarendon Press, Oxford, UK.
[73]Menzel, D. H., and Pekeris, C. L.
1935. Absorption coefficients and hydrogen line intensities. Monthly Not. R. Astron. Soc., 96(1), 0077–0111.
[74]Morales, M. F., and Wyithe, J. S. B.
2010. Reionization and cosmology with 21-cm fluctuations. Ann. Rev. Astron. Astrophys., 48, 121–171.
[75]Mott, N.F., and Massey, H.S.W.
1949. The theory of atomic collisions. Clarendon Press, Oxford, UK.
[76]Nagler, B., Zastrau, U., Faeustlin, R. R. et al. 2009. Turning solid aluminium transparent by intense soft X-ray photoionization. Nat. Phys., 5(9), 693–696.
[77]Nikiforov, A. F., Novikov, V. G., and Uvarov, V. B.
2005. Quantum statistical models of hot dense matter. Birkhauser, Basel, Switzerland.
[78]Pal'chikov, V. G.
1998. Relativistic transition probabilities and oscillator strengths in hydrogen-like atoms. Phys. Scr., 57, 581–593.
[79]Parail, V., Belo, P., Boerner, P. et al. 2009. Integrated modelling of ITER reference scenarios. Nuclear Fusion, 49(7), 075030.
[80]Paris, A., and Davies, E.
2015. Hydrogen clouds from comets 266/P Christensen and P/2008 Y2 (Gibbs) are candidates for the source of the 1977 WOW signal. Washington Acad. Sci., 25–31.
[81]Peacock, N. J., Robinson, D. C., Forrest, M. J., Wilcock, P. D., and Sannikov, V. V.
1969. Measurement of the Electron Temperature by Thomson Scattering in Tokamak T3. Nature, 224, 488–490.
[82]Pert, G. J.
1978. The analytic theory of linear resonant absorption. Plasma Phys., 20, 175–188.
[83]Pert, G. J.
1990. Models of collisional-radiative recombination. J. Phys. B., 23, 619–650.
[84]Pert, G. J.
2013. Introductory fluid mechanics for physicists and mathematicians. Wiley, Oxford, UK.
[85]Phillips, K. J. H.
2004. The solar flare 3.8–10 keV X-ray spectrum. Astrophys. J., 605, 921–930.
[86]Pradhan, A. K., and Nahar, S. N.
2011. Atomic astrophysics and spectroscopy. Cambridge University Press, Cambridge, UK.
[87]Purcell, E. M.
1985. Electricity and magnetism. McGraw-Hill, New York, US.
[88]McWhirter, R. W. P.
1965. Plasma diagnostic techniques. Edited by Huddlestone, R. H., and Leonard, S. L.
Academic Press, New York, US.
[89]Ralchenko, Y.
2016. Modern methods in collisional-radiative modeling of plasmas. Springer, Berlin, Germany.
[90]Randewich, A., and Danson, C.
2014. High energy density physics at the Atomic Weapons Establishment. High Power Laser Sci. Eng., 2, e40.
[91]Rocca, J. J.
1999. Table-top soft X-ray lasers. Rev. Sci. Instrum., 70(10), 3799–3827.
[92]Rutherford, E.
1911. The scattering of α and β particles by matter and the structure of the atom.
Phil. Mag., 21, 669.
[93]Rybicki, G. B., and Lightman, A. P.
1979. Radiative processes in astrophysics. Wiley-Interscience, New York, US.
[94]Sagan, C., Sagan, L. S., and Drake, F.
1972. A message from Earth. Science, 175, 881–884.
[95]Salzmann, D.
1998. Atomic physics in hot plasmas. Oxford University Press, Oxford, UK.
[96]Sampson, D. H., and Zhang, H. L.
1992. Use of the van Regemorter formula for collision strengths or cross sections. Phys. Rev., A45, 1556.
[97]Samukawa, S., Hori, M., Rauf, S. et al. 2012. The 2012 Plasma Roadmap. J. Phys.
D., 45, 253001.
[98]Schawlow, A. L.
1984. Lasers in historical perspective. IEEE J. Quant. Electron., QE-20, 558.
[99]Sheffield, J., Froula, D., Glenzer, S. H., and Luhmann, N. C.
2011. Plasma scattering of electromagnetic radiation: theory and measurement techniques. Academic Press, Amsterdam, The Netherlands.
[100]Smith, R., Tallents, G. J., Zhang, J. et al. 1999. Saturation behavior of two X-ray lasing transitions in Ni-like Dy. Phys. Rev. A, 59(1), R47–R50.
[101]Smith, R. K., Brickhouse, N. S., Liedahl, D. A, and Raymond, J. C.
2001. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J., 556, L91–L95.
[102]Sobelman, I. I., and Vainshtein, L. A.
1998. Excitation of atoms and broadening of spectral lines. Springer, Berlin, Germany.
[103]Stenzel, R. L.
1999. Whistler waves in space and laboratory plasma. J. Geophys. Res., 104, 14379–14396.
[104]Stewart, J. C., and Pyatt, K. D.
1966. Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203.
[105]Tallents, G., Wagenaars, E., and Pert, G.
2010. Optical lithography: lithography at EUV wavelengths. Nat. Photonics, 4(12), 809–811.
[106]Tallents, G. J.
1980. An experimental study of recombination in a laser-produced plasma. Plasma Phys., 22, 709–718.
[107]Tallents, G. J.
1984. The relative intensities of hydrogen-like fine structure. J. Phys.
B., 17, 3677–3691.
[108]Tallents, G. J.
2003. The physics of soft X-ray lasers pumped by electron collisions in laser plasmas. J. Phys. D., 366, R259–R276.
[109]Tallents, G. J.
2016. Free electron degeneracy effects on collisional excitation, ionization, de-excitation and three-body recombination. High Energ. Dens. Phys., 20(9), 9–16.
[110]Tallents, G. J., Wilson, S. A., West, A., Aslanyan, V., Lolley, J., and Rossall, A. K.
2017. The creation of radiation dominated plasmas using laboratory extreme ultraviolet lasers. High Energ. Dens. Phys., 23(3), 129–132.
[111]Tennyson, J.
2011. Astronomical spectroscopy: an introduction to the atomic and molecular physics of astronomical spectra. World Scientific, Singapore.
[112]Trumper, J., Poetscj, W., Reppin, C., Voges, W., Staubert, R., and Kendziorra, E.
1978. Evidence for strong cyclotron line emission in hard X-ray spectrum of Hercules X1. Astrophys. J., 219(3), L105–L110.
[113]Tseng, W. L., Johnson, R. E., Thomsen, M. F., Cassidy, T. A., and Elrod, M. K.
2011. Neutral H2 and H+ 2 ions in the Saturnian magnetosphere. J. Geophys. Res., 116, A03209.
[114]Abels-van Maanen, A. E. P. M. 1985. A package for non-coronal impurity data. JET-DN-T (85)29.
[115]van Regemorter, H.
1962. Rate of collisional excitation in stellar atmospheres. Astrophys. J., A132, 906.
[116]Vinko, S. M., Ciricosta, O., Cho, B. I. et al. 2012. Creation and diagnosis of a soliddensity plasma with an X-ray free-electron laser. Nature, 482(7383), 59–62.
[117]Vinko, S. M., Ciricosta, O., and Wark, J. S.
2014. Density functional theory calculations of continuum lowering in strongly coupled plasmas. Nat. Commun., 5, 3533.
[118]von Frisch, K.
1967. The dance language and orientation of bees. Harvard University Press, Cambridge, MA, US.
[119]Walter, F., Brinks, E., de Blok, W. J. G. et al. 2008. THINGS: the H1 nearby galaxy survey. Astron. J., 136, 2563–2647.
[120]Wang, W.
1999. Generalization of the Thomas-Rieche-Kuhn and the Bethe sum rules. Phys. Rev. A, 60, 262–266.
[121] NASA. Voyager: the interstellar mission, http://voyager.jpl.nasa.gov/spacecraft/ goldenrec1.html (accessed 8 March 2017).
[122]Weinert, F.
1995. Wrong theory-right experiment: the significance of the Stern– Gerlach experiments. Studies in History and Philosophy Mod. Phys., 26, 75–86.
[123]Wing, W. H., Ruff, G. A., Lamb, W. E., and Spezeski, J. J.
1976. Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett., 36, 1488–1491.
[124]Zel'dovich, Ya. B., and Raizer, Yu. P.
1967. Physics of shock waves and high temperature hydrodynamic phenomena. Academic, New York, US.
[125]Zhang, J., MacPhee, A. G., Lin, J. et al. 1997. A saturated X-ray laser beam at 7 nanometers. Science, 276(5315), 1097–1100.