Published online by Cambridge University Press: 11 April 2011
Linear Algebra
Linear algebra studies linear transformations and vector spaces, or in another language, matrix multiplication and the vector space Rn. You should know how to translate between the language of abstract vector spaces and the language of matrices. In particular, given a basis for a vector space, you should know how to represent any linear transformation as a matrix. Further, given two matrices, you should know how to determine if these matrices actually represent the same linear transformation, but under different choices of bases. The key theorem of linear algebra is a statement that gives many equivalent descriptions for when a matrix is invertible. These equivalences should be known cold. You should also know why eigenvectors and eigenvalues occur naturally in linear algebra.
Real Analysis
The basic definitions of a limit, continuity, differentiation and integration should be known and understood in terms of ∈'s and δ's. Using this ∈ and δ language, you should be comfortable with the idea of uniform convergence of functions.
Differentiating Vector-Valued Functions
The goal of the Inverse Function Theorem is to show that a differentiable function f : Rn → Rn is locally invertible if and only if the determinant of its derivative (the Jacobian) is non-zero. You should be comfortable with what it means for a vector-valued function to be differentiable, why its derivative must be a linear map (and hence representable as a matrix, the Jacobian) and how to compute the Jacobian.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.