Published online by Cambridge University Press: 05 June 2012
To compute the convex hull of a finite set of points is a classical problem in computational geometry. In two dimensions, there are several algorithms that solve this problem in an optimal way. In three dimensions, the problem is considerably more difficult. As for the general case of any dimension, it was not until 1991 that a deterministic optimal algorithm was designed. In dimensions higher than 3, the method most commonly used is the incremental method. The algorithms described in this chapter are also incremental and work in any dimension. Methods specific to two or three dimensions will be given in the next chapter.
Before presenting the algorithms, section 8.1 details the representation of polytopes as data structures. Section 8.2 shows a lower bound of Ω(n log n + n⌊d/2⌋) for computing the convex hull of n points in d dimensions. The basic operation used by an incremental algorithm is: given a polytope C and a point P, derive the representation of the polytope conv(C ∪ {P}} assuming the representation of C has already been computed. Section 8.3 studies the geometric part of this problem. Section 8.4 shows a deterministic algorithm to compute the convex hull of n points in d dimensions. This algorithm requires preliminary knowledge of all the points: it is an off-line algorithm. Its complexity is O(n log n + n⌊(d+1)/2⌋), which is optimal only in even dimensions.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.