from Part II - Studies on the four themes
Published online by Cambridge University Press: 04 August 2010
We present a new, statistically consistent algorithm for phylogenetic tree construction that uses the algebraic theory of statistical models (as developed in Chapters 1 and 3). Our basic tool is Singular Value Decomposition (SVD) from numerical linear algebra.
Starting with an alignment of n DNA sequences, we show that SVD allows us to quickly decide whether a split of the taxa occurs in their phylogenetic tree, assuming only that evolution follows a tree Markov model. Using this fact, we have developed an algorithm to construct a phylogenetic tree by computing only O(n2) SVDs.
We have implemented this algorithm using the SVDLIBC library (available at http://tedlab.mit.edu/~dr/SVDLIBC/) and have done extensive testing with simulated and real data. The algorithm is fast in practice on trees with 20–30 taxa.
We begin by describing the general Markov model and then show how to flatten the joint probability distribution along a partition of the leaves in the tree. We give rank conditions for the resulting matrix; most notably, we give a set of new rank conditions that are satisfied by non-splits in the tree. Armed with these rank conditions, we present the tree-building algorithm, using SVD to calculate how close a matrix is to a certain rank. Finally, we give experimental results on the behavior of the algorithm with both simulated and real-life (ENCODE) data.
The general Markov model
We assume that evolution follows a tree Markov model, as introduced in Section 1.4, with evolution acting independently at different sites of the genome.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.