from Part II - Studies on the four themes
Published online by Cambridge University Press: 04 August 2010
Graphical models are powerful statistical tools that have been applied to a wide variety of problems in computational biology: sequence alignment, ancestral genome reconstruction, etc. A graphical model consists of a graph whose vertices have associated random variables representing biological objects, such as entries in a DNA sequence, and whose edges have associated parameters that model transition or dependence relations between the random variables at the nodes. In many cases we will know the contents of only a subset of the model vertices, the observed random variables, and nothing about the contents of the remaining ones, the hidden random variables. A common example is a phylogenetic tree on a set of current species with given DNA sequences, but with no information about the DNA of their extinct ancestors. The task of finding the most likely set of values of the hidden random variables (also known as the explanation) given the set of observed random variables and the model parameters, is known as inference in graphical models.
Clearly, inference drawn about the hidden data is highly dependent on the topology and parameters (transition probabilities) of the graphical model. The topology of the model will be determined by the biological process being modeled, while the assumptions one can make about the nature of evolution, site mutation and other biological phenomena, allow us to restrict the space of possible transition probabilities to certain parameterized families. This raises several questions.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.