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Abstract

We consider a corank 1, finitely determined, quasi-homogeneous map germ f from (C2, 0)
to (C3, 0). We describe the embedded topological type of a generic hyperplane section of
f (C2), denoted by γf , in terms of the weights and degrees of f . As a consequence, a necessary
condition for a corank 1 finitely determined map germ g : (C2, 0) → (C3, 0) to be quasi-
homogeneous is that the plane curve γg has either two or three characteristic exponents. As
an application of our main result, we also show that any one-parameter unfolding F = (ft, t)
of f which adds only terms of the same degrees as the degrees of f is Whitney equisingular.

2020 Mathematics Subject Classification: 32B10, 14B07 (Primary); 32B15,
14B05 (Secondary)

1. Introduction

Throughout this paper, we assume that f : (C2, 0) → (C3, 0) is a finite, generically 1 − 1,
holomorphic map germ, unless otherwise stated. If f has corank 1, local coordinates can be
chosen so that these map germs can be written in the form

f (x, y) = (x, p(x, y), q(x, y)) (1)

for some function germs p, q ∈ m2
2, where m2 is the maximal ideal of the local ring of

holomorphic function germs in two variables O2.
In [12], Nuño–Ballesteros and Marar studied the generic hyperplane sections of f (C2),

usually called, the transversal slice of f (see Definition 3·1). They showed that if a certain
genericity condition is satisfied, then the transverse slice curve γf contains some information
on the geometry of f .

In this paper, we consider a corank 1, finitely determined, quasi-homogeneous map germ
f (x, y) = (x, p(x, y), q(x, y)) from (C2, 0) to (C3, 0). To illustrate the problem that we will
present, consider the map germs:

f1(x, y) = (x, y3 + xy, y4 + 3xy) and f2(x, y) = (x, y3, xy + y5),
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which are the singularities P3 and H2 of Mond’s list [16, p. 378], respectively. Note that
both f1 and f2 are corank 1, finitely determined and quasi-homogeneous map germs.

Denote by (X, Y , Z) the coordinates of C3 and consider the hyperplane H given by the
equation X = 0. Note that the hyperplanes sections H ∩ f1(C2) and H ∩ f2(C2) of f1 and f2
are reduced plane curves parametrised by u �→ (u3, u4) and u �→ (u3, u5), respectively. One
can check that H ∩ f1(C2) is in fact the transversal slice of f , in the sense that it satisfies
the transversality conditions of [12, section 3]. However, in [12, example 5·2], Marar and
Nuño–Ballesteros showed that H ∩ g(C2) is not the transversal slice of f2. This means that
the hyperplane H defined by X = 0 is not a generic plane for f2 in the sense of [12, section 3].
On the other hand, there are germs of diffeomorphism �:(C2, 0) → (C2, 0) and �:(C3, 0) →
(C3, 0) such that g = � ◦ f2 ◦ �, where

g(x, y) = (x, y3, xy + xy2 + y4).

In other words, we have that f2 is A-equivalent to g. Furthermore, now the hyperplane H =
V(X) is generic for g. So, the transversal slice of g is the reduced plane curve parametrised
by u �→ (u3, u4). We conclude that the embedded topological type of the transversal slice of
f2 is the same as the plane curve parametrised by u �→ (u3, u4).

This example shows that for a corank 1, finitely determined, quasi-homogeneous map
germ in the normal form (1) the plane H defined by X = 0 may not be generic for f . Since the
embedded topological type of the transversal slice of f does not depend on the choice of the
coordinates (see [22]), a solution to fix this inconvenience is to work with the A-equivalence.
However, as illustrated in the above example, when we compose a quasi-homogeneous map
germ with germs of diffeormorphisms in the source and target we may lose the property of
the resulting composite map being quasi-homogeneous (in relation to the new coordinate
system). That seems to mean that the embedded topological type of the transversal slice
curve of f is not related to the quasi-homogeneous type of f . So, the following question is
natural:

Question 1. Let f : (C2, 0) → (C3, 0) be a corank 1, finitely determined, quasi-
homogeneous map germ on the form (1), i.e., f (x, y) = (x, p(x, y), q(x, y)). Is the embedded
topological type of the transversal slice γf of f determined by the weights of x and y and the
weighted degrees of p and q?

We know that if f has corank 1, then γf is an irreducible plane curve. It is well known that
for an irreducible plane curve the characteristic exponents determine and are determined by
the embedded topological type of the curve. Thus Question 1 can be reformulated in terms
of the characteristic exponents of γf . That is, we can ask if the characteristic exponents of
γf are determined by the weights and degrees of f . In the first part of this paper, we present
a positive answer to Question 1, (see Propositions 3·5 and 3·10). We show that the number
of characteristic exponents of γf can only be two or three, depending on some relations
between the weights and degrees of f . More precisely, we show the following result:

THEOREM 1·1. Let f : (C2, 0) → (C3, 0) be a corank 1, finitely determined, quasi-
homogeneous map germ. Write f in the normal form

f (x, y) = (x, p(x, y), q(x, y)),
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and let a,b be the weights of the variables x,y, respectively. Let d2 and d3 be the weighted
degrees of p and q, respectively, with 2 ≤ d2 ≤ d3. Set c = min{a, d2}. Then:

If a ≤ d2, 4 ≤ d2/b and gcd(d2, d3) = 2, then γf has three characteristic exponents given
by

d2, d3 and d2 + d3 − a.

Otherwise, γf has only two characteristic exponents given by

d2

b
and

(
(d2 − c)(d3 − b) · c + (d2 − c) · sab

ab(d2 − b)

)
+ 1,

where

s =
{

0 if the restriction of f to the line x = 0isgenerically1 − to − 1.
1 otherwise.

Clearly when γf has three characteristic exponents it is not a quasi-homogeneous curve.
However, we note that the number s in Theorem 1·1 is determined by the weights and degrees
of f (see Remark 3·11). In this way, Theorem 1·1 shows that in fact the embedded topological
type of the transversal slice of f is determined by the weights and degrees of f , even in the
case where the curve γf is not quasi-homogeneous.

In the second part of this work, we present two natural consequences of Theorem 1·1.
More precisely, in Section 4 we show that a necessary condition for a corank 1 finitely
determined map germ g:(C2, 0) → (C3, 0) to be quasi-homogeneous (in a suitable system of
coordinates) is that the transversal slice of g must be have either two or three characteristic
exponents (Corollary 4·1).

Also in Section 4, we show that any one-parameter unfolding F = (ft, t) of f which adds
only terms of the same degrees as the degrees of f is Whitney equisingular (Corollary
4·4). We also consider some natural questions and provide counterexamples for them. For
instance, we show that Question 1 has a negative answer in corank 2 case (see Example
4·6). We also show that Question 1 has a negative answer for corank 1 map germs from
(Cn, 0) → (Cn+1, 0) with n ≥ 3 (see Example 4·7). We finish presenting examples to illus-
trates our results, more precisely, we describe the embedded topological type of any
quasi-homogeneous map germ of Mond’s list (see Section 4).

2. Preliminaries

Throughout this paper, given a finite map f : C2 →C
3, (x, y) and (X, Y , Z) are used

to denote systems of coordinates in C
2 (source) and C

3 (target), respectively. Also,
C{x1, . . . , xn} 
On denotes the local ring of convergent power series in n variables. The
letters U,V and W are used to denote open neighbourhoods of 0 in C

2, C3 and C, respec-
tively. For unfoldings, we will use T to denote the parameter space, which is also an open
neighbourhood of 0 in C. Throughout, we use the standard notation of singularity theory as
the reader can find in Wall’s survey paper [29], see also [19].

2·1. Double point curves for corank 1 map germs

In this section, we deal only with of corank 1 map germs. We follow [14, section 1] and
[17, section 3].
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Let f : (C2, 0) → (C3, 0) be a finite corank 1 map germ. As we said in Introduction, up
to A−equivalence, f can be written in the form f (x, y) = (x, p(x, y), q(x, y)). In this case, the
lifting of the double point space is defined as:

D2(f ) = V

(
x − x′, p(x, y) − p(x, y′)

y − y′ ,
q(x, y) − q(x, y′)

y − y′
)

,

where (x, y, x′, y′) are coordinates of C2 ×C
2 and V(h1, . . . , hl) denotes the set of common

zeros of h1, . . . , hl.
Once the lifting D2(f ) ⊂C

2 ×C
2 is defined, we now consider its image on C

2 by the
projection π :C2 ×C

2 →C
2 onto the first factor, which will be denoted by D(f ). For our

purposes, the most appropriate structure for D(f ) is the one given by the Fitting ideals,
because it relates in a simple way the properties of the spaces D2(f ) and D(f ). Also, this
structure is well behaved by deformations.

More precisely, given a finite morphism of complex spaces g:X → Y the push-forward
g∗OX is a coherent sheaf of OY−modules (see [10, chapter 1]) and to it we can (as in
[20, section 1]) associate the Fitting ideal sheaves Fk(g∗OX). Notice that the support of
F0(g∗OX) is just the image g(X). Analogously, if g:(X, x) → (Y , y) is a finite map germ then
we denote also by Fk(g∗OX) the kth Fitting ideal of OX,x as OY ,y−module.

Another important space to study the topology of f (C2) is the double point curve in the
target, that is, the image of D(f ) by f , denoted by f (D(f )), which will also be consider with
the structure given by Fitting ideals. In this way, we have the following definition:

Definition 2·1. Let f : U ⊂C
2 → V ⊂C

3 be a finite mapping.

(a) Let π |D2(f ):D
2(f ) ⊂ U × U → U be the restriction to D2(f ) of the projection π . The

double point space is the complex space

D(f ) = V(F0(π∗OD2(f ))).

Set theoretically we have the equality D(f ) = π(D2(f )).

(b) The double point space in the target is the complex space f (D(f )) = V(F1(f∗O2)).
Notice that the underlying set of f (D(f )) is the image of D(f ) by f .

(c) Given a finite map germ f : (C2, 0) → (C3, 0), the germ of the double point space is
the germ of complex space D(f ) = V(F0(π∗OD2(f ))). The germ of the double point
space in the target is the germ of the complex space f (D(f )) = V(F1(f∗O2)).

Remark 2·2. If f : U ⊂C
2 → V ⊂C

3 is finite and generically 1-to-1, then D2(f ) is
Cohen–Macaulay and has dimension 1 (see [13, proposition 2·1]). Hence, D2(f ), D(f ) and
f (D(f )) are curves. In this case, without any confusion, we also call these complex spaces
by the “lifting of the double point curve”, the “double point curve” and the “image of the
double point curve”, respectively.
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2·2. Finite determinacy and the invariant C(f)

Definition 2·3.

(a) Two map germs f , g:(C2, 0) → (C3, 0) are A-equivalent, denoted by g ∼A f , if there
exist germs of diffeomorphisms �:(C2, 0) → (C2, 0) and �:(C3, 0) → (C3, 0), such
that g = � ◦ f ◦ �.

(b) A map germ f : (C2, 0) → (C3, 0) is finitely determined (A-finitely determined) if
there exists a positive integer k such that for any g with k-jets satisfying jkg(0) = jkf (0)
we have g ∼A f .

Remark 2·4. Consider a finite map germ f : (C2, 0) → (C3, 0). By Mather–Gaffney crite-
rion ([29, theorem 2·1]), f is finitely determined if and only if there is a finite representative
f : U → V , where U ⊂C

2, V ⊂C
3 are open neighbourhoods of the origin, such that f −1(0) =

{0} and the restriction f : U \ {0} → V \ {0} is stable.
This means that the only singularities of f on U \ {0} are cross-caps (or Whitney umbrel-

las), transverse double and triple points. By shrinking U if necessary, we can assume that
there are no cross-caps nor triple points in U. Then, since we are in the nice dimensions of
Mather ([15, p. 208]), we can take a stabilisation of f ,

F : U × T →C
4, F(x, y, t) = (ft(x, y), t),

where T is a neighbourhood of 0 in C. It is well known that the number C(f ) := � of cross-
caps of ft is independent of the particular choice of the stabilisation and it is also an analytic
invariant of f (see for instance [16]). One can calculate C(f) as the codimension of the
ramification ideal J(f) in O2, that is:

C(f ) = dimC
O2

J(f )
. (2)

We remark that the space D(f ) plays a fundamental role in the study of the finite determi-
nacy. In [14, theorem 2·14], Marar and Mond presented necessary and sufficient conditions
for a map germ f : (Cn, 0) → (Cp, 0) with corank 1 to be finitely determined in terms of the
dimensions of D2(f ) and other multiple points spaces. In [13], Marar, Nuño–Ballesteros and
Peñafort–Sanchis extended this criterion of finite determinacy to the corank 2 case. They
proved the following result.

THEOREM 2·5. ([13, 14]) Let f : (C2, 0) → (C3, 0) be a finite and generically 1 − 1 map
germ. Then f is finitely determined if and only if the Milnor number of D(f) at 0 is finite.

2·3. Identification and fold components of D(f)

When f : (C2, 0) → (C3, 0) is finitely determined, the restriction f|D(f ) of (a representative)
f to D(f ) is generically 2-to-1 (i.e; 2-to-1 except at 0). On the other hand, the restriction of f
to an irreducible component D(f )i of D(f ) is either generically 1-to-1 or generically 2-to-1.
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Fig 1. Identification and fold components of D(f ) (real points).

This motivates us to give the following definition which is from [27, definition 4·1] (see also
[24, definition 2·4]).

Definition 2·6. Let f : (C2, 0) → (C3, 0) be a finitely determined map germ. Let f : U → V
be a representative of f and consider an irreducible component D(f )j of D(f).

(a) If the restriction f|D(f )j :D(f )j → V is generically 1 − 1, we say that D(f )j is an identifi-

cation component of D(f). In this case, there exists an irreducible component D(f )i of
D(f), with i �= j, such that f (D(f )j) = f (D(f )i). We say that D(f )i is the associated iden-
tification component to D(f )j or that the pair (D(f )j, D(f )i) is a pair of identification
components of D(f).

(b) If the restriction f|D(f )j :D(f )j → V is generically 2 − 1, we say that D(f )j is a fold
component of D(f).

We would like to remark that the terminology “fold component” in Definition 2·6(b) was
chosen by the author in [27, definition 4·1] in analogy to the restriction of f to D(f ) = V(x)
when f is the cross-cap f (x, y) = (x, y2, xy), which is a fold map germ. The following example
illustrates the two types of irreducible components of D(f ) presented in Definition 2·6.

Example 2·7. Let f (x, y) = (x, y2, xy3 − x5y) be the singularity C5 of Mond’s list [17].
Note that D(f ) = V(xy2 − x5). Thus we have that D(f) has three irreducible components
given by

D(f )1 = V(x2 − y), D(f )2 = V(x2 + y) and D(f )3 = V(x).

Notice that D(f )3 is a fold component and (D(f )1, D(f )2) is a pair of identification compo-
nents. Also, we have that f (D(f )3) = V(X, Z) and f (D(f )1) = f (D(f )2) = V(Y − X4, Z) (see
Figure 1).

3. The slice of a quasi-homogeneous map germ from C
2 to C

3

In [12], Marar and Nuño–Ballesteros studied the generic hyperplane sections of f (C2)
for a map germ map germ f from (C2, 0) to (C3, 0) of corank 1. Following their paper, in
this section we present their notion of transversal slice for f .
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Let f : (C2, 0) → (C3, 0) be a corank 1, finite and generically 1 − 1 holomorphic map
germ. In this case, the image of the differential df0(C2) is a line in C

3 through the origin.
Also, as we said in Remark 2·2, the double point space in the target f (D(f )) is a curve in C

3.

Definition 3·1. We say that a plane H0 ⊂C
3 through the origin is generic for f if the

following three conditions hold:

(1) H0 ∩ df0(C2) = {0},
(2) H0 ∩ f (D(f )) = {0}, and

(3) H0 ∩ C0(f (D(f ))) = {0},
where C0(f (D(f ))) denotes the Zariski tangent cone of f(D(f)) at 0.

We remark that the set of generic planes for f is a non-empty Zariski open subset of
the Grasmannian of planes of C3. In general, the analytic type of the curve H ∩ f (C2) may
depend on the choice of the coordinates and the generic plane H, but its embedded topolog-
ical type does not (see [22]). Hence, for a generic plane H we will denote the plane curve
H ∩ f (C2) by γf (or γ , for short, if the context is clear) and it usual to call it the transverse
slice of f.

We would like to study the transversal slice of quasi-homogeneous map germs. Thus, it is
convenient to present a precise definition of this kind of map.

Definition 3·2. A polynomial p(x1, . . . , xn) is quasi-homogeneous if there are pos-
itive integers w1, . . . , wn, with no common factor and an integer d such that
p(kw1x1, . . . , kwnxx) = kdp(x1, . . . , xn). The number wi is called the weight of the variable
xi and d is called the weighted degree of p. In this case, we say p is of type (d;w1, . . . , wn).

Definition 3·2. extends to polynomial map germs f : (Cn, 0) → (Cp, 0) by just requir-
ing each coordinate function fi to be quasi-homogeneous of type (di;w1, . . . , wn), for fixed
weights w1, . . . , wn. In particular, for a quasi-homogeneous map germ f : (C2, 0) → (C3, 0)
we say that it is quasi-homogeneous of type (d1, d2, d3;w1, w2).

Note that if f : (C2, 0) → (C3, 0) is a corank 1 quasi-homogeneous map germ in the normal
form (1), then we can write p(x, y) = λ1yn + xp̃(x, y) and q(x, y) = λ2ym + xq̃(x, y), for some
n, m ∈N, λi ∈C and p̃, q̃ ∈O2 with p̃(x, 0) = q̃(x, 0) = 0. This is explained more precisely in
the following lemma, where a normal form for f which is more convenient for our purposes
is presented. To simplify the notation, in the following we will write p,q in place of p̃, q̃ and
set a := w1 and b := w2 which will certainly not cause notation confusion.

LEMMA 3·3. ([26, Lemma 2·11]). Let g(x, y) = (g1(x, y), g2(x, y), g3(x, y)) be a corank 1,
finitely determined, quasi-homogeneous map germ of type (d1, d2, d3;a, b). Then g is A-
equivalent to a quasi-homogeneous map germ f with type (di1 = a, di2 , di3 ;a, b), which is
written in the form

f (x, y) = (x, yn + xp(x, y), βym + xq(x, y)), (3)

for some integers n, m ≥ 2, β ∈C, p, q ∈O2, p(x, 0) = q(x, 0) = 0, where (di1 , di2 , di3) is a
permutation of (d1, d2, d3) such that di2 ≤ di3 .
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In the sequel, μ(X, 0) and m(X,0) denotes respectively the Milnor number and the multi-
plicity of X at 0. The multiplicity of f is the multiplicity of f (C2) at 0. We note that if f is in
the normal form (3), then m(f (C2)) = n. In this way, we divide the proof of Theorem 1·1 into
two parts. In the first part we present a proof of the result in the case where the multiplicity
of f is 2 (see Proposition 3·5). In the second part we deal with the case of multiplicity greater
than 2 (see Proposition 3·10). In both cases, we will need the following lemma.

LEMMA 3·4. Let f : (C2, 0) → (C3, 0) be a corank 1, finitely determined, quasi-
homogeneous map germ of type (d1 = a, d2, d3;a, b), with d2 ≤ d3, and write it as in
Lemma 3·3, that is, in the form

f (x, y) = (x, yn + xp(x, y), βym + xq(x, y)).

Let γ be the transversal slice of f. Then

μ(γ , 0) = 1

ab2

(
(d2 − b)(d3 − b)c + sab(d2 − c)

)
,

where c = min{a, d2}, s = 0 if the restriction of f to the line x = 0 is generically 1−to−1 or
s = 1, otherwise.

Proof. Since (f −1(γ ), 0) is a germ of smooth curve in (C2, 0), μ(f −1(γ ), 0) = 0. Now the
proof follows by [13, lemma 5·2] and [26, theorem 3·2].

3·1. The case of multiplicity 2

The following result gives us a positive answer for Question 1 in the case where the
multiplicity of f is 2.

PROPOSITION 3·5. Let f : (C2, 0) → (C3, 0) be a corank 1, finitely determined, quasi-
homogeneous map germ of type (d1 = a, d2, d3;a, b), with d2 ≤ d3 and suppose that f has
multiplicity 2. Write f as in Lemma 3·3, that is, in the form

f (x, y) = (x, y2 + xp(x, y), βym + xq(x, y)).

Let γ be the transversal slice of f. Then γ has only two characteristic exponents given by

2 and
(d3 − b) · c

ab
+ (2b − c) · s

b
+ 1,

where c = min{a, d2}, s = 0 if the restriction of f to the line x = 0 is generically 1−to−1 or
s = 1, otherwise.

Proof. Since f has multiplicity 2, γ is a plane curve with multiplicity 2. Therefore, γ has
only two characteristic exponents, namely, 2 and k with 2 < k odd. By Lemma 3·4 we have
that

k − 1 = μ(γ , 0) = (d2 − b)(d3 − b)c + sab(d2 − c)

ab2
(4)
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where c = min{a, d2} and s = 0 if β �= 0 and m is odd, or s = 1, otherwise. By expression (4)
we conclude that

k = (d3 − b) · c

ab
+ (2b − c) · s

b
+ 1,

since in this case we have that d2 = 2b.

When we look to the characteristic exponents of γ in Proposition 3·5, we identify four
situations depending on the values that c and s may assume. The following example shows
that these four situations can occur.

Example 3·6. (c = d2 and s = 1) Consider the map germ

f (x, y) = (x, y2, x2y − xy5),

which is quasi-homogeneous of type (4, 2, 9;4, 1). We have that D(f ) = V(x(x − y4)) which
is reduced. So, by Theorem 2·5 we have that f is finitely determined. Using Proposition 3·5
we obtain that the characteristic exponents of γ are 2 and 5. Note that in this case the plane
H = V(X) contains an irreducible component of f(D(f)) (see Figure 2).

Fig 2. The surface f (C2) and the plane H = V(X) (real points).

We will illustrates the other cases in Table 3 (see Section 4). For instance, consider the
F4-singularity of Mond’s list [17], which corresponds to the case where c = a and s = 0. For
the case where c = a and s = 1 consider the cross-cap given by f (x, y) = (x, y2, xy). Finally,
for the case where c = d2 and s = 0 consider the B3-singularity of of Mond’s list.

3·2. The case of multiplicity greater than 2

In this section we will present a proof of Theorem 1·1 in the case where the multiplicity
of f is greater than 2. Note that if n = m(f (C2)) ≥ 3 in Lemma 3·3, then β �= 0. Otherwise,
the restriction of f|V(x):V(x) →C

3 of f to the curve V(x) ⊂C
2 will be generically n-to-1

over its image, a contradiction since f is finitely determined. In this case, we will suppose
that β = 1. Also, if f is finitely determined, then by [18, proposition 1·15] we have that
D(f ) = V(λ(x, y)), where

λ(x, y) = xsyv ·
(

r∏
i=1

(ya − αix
b)

)
(5)
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s, v ∈ {0, 1}, αi ∈C, αi �= 0 for all i = 1, . . . , r and r = (b(n − 1)(m − 1) − sa − vb)/(ab). In
particular, λ is a quasi-homogeneous polynomial of type (b(n − 1)(m − 1);a, b). To prove
the main result of this section we will need the following three lemmas.

LEMMA 3·7. Let f : (C2, 0) → (C3, 0) be a corank 1, finitely determined, quasi-
homogeneous map germ of type (d1 = a, d2, d3;a, b), with d2 ≤ d3, and multiplicity greater
than 2. Write f as in Lemma 3·3, that is, in the form

f (x, y) = (x, yn + xp(x, y), ym + xq(x, y)).

Then:

(a) V(x) is an irreducible component of D(f) if and only if gcd(n, m) = 2. Furthermore, if
s = 1 in (5), then V(x) is a fold component of D(f);

(b) if V(x) is an irreducible component of D(f), then b = 1 and a is odd;

(c) if v = 1 in (5), then V(y) is an identification component of D(f). Furthermore, if V(y)
is an irreducible component of D(f), then a = 1;

(d) D(f ) = V(λ(x, y)), where

λ(x, y) = xs ·
(

r∏
i=1

(ya − αix
b)

)
(6)

s ∈ {0, 1}, αi ∈C and r = b(n − 1)(m − 1) − sa

ab
.

Proof.

(a) If gcd(n, m) = 2, then the restriction of f to V(x) is generically 2-to-1 and therefore
V(x) is a fold component of D(f ). On the other hand, suppose that V(x) ⊂ D(f ) and
gcd(n, m) �= 2. Since f is finitely determined, then we should have that gcd(n, m) =
1. Therefore, V(x) should be an identification component of D(f ). Thus, there exist
another irreducible component of D(f ) that has the same image by f as V(x). By
expression (5), this irreducible component should be either V(y) or V(ya − αixb) for
some i. However, note that f (V(y)) �= f (V(x)) and f (V(ya − αixb)) �= f (V(x)) for all i,
which is a contradiction.

(b) By expression (5), we have that D(f ) = V(λ(x, y)), where λ is quasi-homogeneous of
type (b(n − 1)(m − 1);a, b). Thus we can write

λ(x, y) = a0y(n−1)(m−1) + a1xby(n−1)(m−1)−a + a2x2by(n−1)(m−1)−2a + . . .

+ akxζby(n−1)(m−1)−ζa,

where ζ is the greatest positive integer such that (n − 1)(m − 1) − ζa ≥ 0.
Since V(x) ⊂ D(f ), then a0 = 0. Since f is finitely determined, then by Theorem 2·5 we

have that D(f ) is reduced, and therefore b = 1 and a1 �= 0. To see that a should be odd, write
f in the form:

f (x, y) = (x, yn + b1xbyn−a + b2x2byn−2a + . . . + bηxηbyn−ηa,

ym + c1xbym−a + c2x2bym−2a + . . . + cθxθbym−θa),
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where η (respectively θ) is the greatest positive integer such that n − ηa ≥ 1 (respectively
m − θa ≥ 1). By formula (2) in Remark 2·4, we obtain that C(f ) is the codimension of the

ideal I =
〈
n · yn−1 + x · ∂p

∂y
, m · ym−1 + x · ∂q

∂y

〉
in O2. We conclude that either bη �= 0 and

n − ηa = 1 or cθ �= 0 and m − θa = 1. Otherwise, the codimension of I in O2 is not finite
and hence C(f ) is also not finite, which is a contradiction since f is finitely determined. Now,
we have that n,m are both even. Since either n − ηa = 1 or m − θa = 1, by parity of n,m and
a we conclude that a should be odd.

(c) Note that the restriction of f to V(y) is generically 1-to-1. Thus, if V(y) ⊂ D(f ), then
it is an identification component of D(f ). In this case, there exist another irreducible
component of D(f ), which is necessarily on the form V(ya − αixb), for some i with
αi �= 0, such that f (V(y)) = f (V(ya − αixb)). Set Cαi := V(ya − αixb) and consider a
parametrisation ϕαi :W → U of Cαi defined by ϕαi(u) = (ua, ρiub), where W is an open
neighbourhood of 0 in C and ρi ∈C is such that ρa

i = αi. Since Cαi is an identification
component of D(f ), then the mapping ϕ̃αi := f ◦ ϕαi :W → V , defined by

ϕ̃αi := (ua, ρ1,iu
d2 , ρ2,iu

d3), (7)

is a parametrisation of f (Cαi), for some ρ1,i, ρ2,i ∈C. Since f (V(y)) = f (V(ya −
αixb)), then ρ1,i = ρ2,i = 0. Since the restriction of f to Cαi is generically 1-to-1, we
conclude that a = 1.

(d) Suppose that v = 1 in (5). By (c), we have that a = 1. Thus we can rewrite (5) allowing
one of the αi

′s to be zero, when a = 1.

LEMMA 3·8. Let f : (C2, 0) → (C3, 0) be a corank 1, finitely determined, quasi-
homogeneous map germ of type (d1 = a, d2, d3;a, b), with d2 ≤ d3, and multiplicity greater
than 2. Let θ be the largest positive integer such that m − θa ≥ 1. If a > bn, then θ =
(m − 1)/a and f can be written in the following form

f (x, y) = (x, yn, ym + c1xbym−a + c2x2bym−2a + . . . + cθxθby),

where c1, . . . , cθ ∈C and cθ �= 0.

Proof. The proof is similar to the proof of Lemma 3·7(b) observing that if m − θa > 1 or
cθ = 0 then C(f ) is not finite, a contradiction since f is finitely determined.

The following lemma shows how the Milnor number of an irreducible plane curve with
only three characteristic exponents can be calculated.

LEMMA 3·9. Let (X,0) be a germ of irreducible reduced plane curve and suppose that
it has only three characteristic exponents, denoted by e0, e1 and e2. Set e := gcd(e0, e1), the
greatest common divisor of e0 and e1. Then

μ(X, 0) = (e2 − e1) · e + (e1 − 1) · e0 − e2 + 1.

Proof. By [3, proposition 4·3·5] one can express the generators of the semigroup � of
(X,0) in terms of the characteristic exponents e0, e1 and e2. Since (X,0) is a plane curve, the
conductor of the semigroup � coincides with the Milnor number of (X,0). Now, the proof
follows by [3, proposition 4·4·5(iii)].
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Table 1. Characteristic exponents of the transversal slice of f

Cases Conditions Characteristic exponents of γ

Case A a ≤ d2 gcd(n, m) = 1
d2

b
,

d3

b

Case B a ≤ d2 gcd(n, m) = 2 d2, d3, d2 + d3 − a

Case C a > d2
d2

b
,

(d3 − b)d2

ab
+ 1

Now we are able to give a positive answer for Question 1 in the case where the multiplicity
of f is greater than two. We do this in the following proposition.

PROPOSITION 3·10. Let f : (C2, 0) → (C3, 0) be a corank 1, finitely determined, quasi-
homogeneous map germ of type (d1 = a, d2, d3;a, b), with d2 ≤ d3, and multiplicity greater
than 2. Write f as in Lemma 3·3, that is, in the form

f (x, y) = (x, yn + xp(x, y), ym + xq(x, y)).

Set c := min{a, d2} and let γ be the transversal slice of f. Then the characteristic exponents
of γ are given in terms of a, b, d2 = bn, and d3 = bm as follows in Table 1.

Proof. Take a representative f : U → V of f . By Lemma 3·7 (d), we have that D(f ) =
V(λ(x, y)), where

λ(x, y) = xs
r∏

i=1

(ya − αix
b),

s ∈ {0, 1}, αi ∈C are all distinct and r = (d2 − b)(d3 − b) − sab

ab2
.

Set Cαi := V(ya − αixb). As in the proof of Lemma 3·7(c), consider a parametrisation
ϕαi :W → U of Cαi defined by ϕαi(u) = (ua, ρiub), where W is an open neighbourhood of 0
in C and ρi ∈C is such that ρa

i = αi. So, if Cαi is an identification component of D(f ), then
the mapping ϕ̃αi := f ◦ ϕαi :W → V , defined by

ϕ̃αi := (ua, ρ1,iu
d2 , ρ2,iu

d3 ), (8)

is a parametrisation of f (Cαi), for some ρ1,i, ρ2,i ∈C. On the other hand, if Cαi is a fold
component of D(f ), then the mapping ϕαi

′:W → V , defined by

ϕ′
αi(u) := (ua/2, ρ1,i

′ud2/2, ρ2,i
′ud3/2), (9)

is a parametrisation of f (Cαi), for some ρ1,i
′, ρ2,i

′ ∈C. Set c := min{a, d2}. Note that if a >

d2, then ρ1,i, ρ1,i
′ �= 0, by Lemma 3·8. In this way, by expressions (8) and (9) we can see

that the tangent cone of f (Cαi) is the line with direction given by the vector (1,0,0) if a < d2,

(1, ρ1,i, 0) or (1, ρ
′
1,i, 0) if a = d2 and finally (0,1,0) if a > d2.

Set C := V(x). If C ⊂ D(f ), then by Lemma 3·7 (a) we have that it is a fold component of
D(f ). In this case, the map ϕ:W → V defined by

ϕ(u) = (0, un/2, um/2) (10)

https://doi.org/10.1017/S0305004123000464 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000464


On the topology of the transversal slice 351

is a parametrisation of f (C), and hence its tangent is the line with direction given by the
vector (0,1,0).

We are now able to handle all cases. Let’s show the simplest cases A and C first.

• Case A: By the considerations above, one can see that in this case the plane H =
V(X) satisfies the conditions (1),(2) and (3) of Definition 3·1. Hence, the restriction
of f to the line x = 0, i.e, the map germ ϕ(u) = f (0, u) = (0, un, um), is a Puiseux
parametrisation for γ . Therefore, its characteristic exponents are n = d2/b and m =
d3/b.

• Case C: By Lemma 3·8 we have that p(x, y) = 0, and therefore we can write f in the
form

f (x, y) = (x, yn, ym + c1xbym−a + c2x2bym−2a + . . . + cθxθby),

where cθ �= 0 and θ = (m − 1)/a. By expressions (8) and (9) we can see that the plane H =
V(X) is not generic for f since the condition (3) of Definition 3·1 fails, that is, H contains the
tangent of f (Cαi) for all i. Furthermore, condition (2) also fails if gcd(n, m) = 2. However,
after the linear change of coordinates on the target given by (X, Y , Z) �→ (X − Y , Y , Z), we
can rewrite f as:

f (x, y) = (x − yn, yn, ym + c1xbym−a + c2x2bym−2a + . . . + cθxθby).

Now, note that the plane H = V(X) (in the new system of coordinates) satisfies the con-
ditions (1),(2) and (3) of Definition 3·1. Hence, the map germ ϕ(u) = f (un, u) = (0, un, um +
c1unb+m−a + c2u2nb+m−2a + . . . + cθuθnb+1) is a Puiseux parametrisation for γ . Now note
that

m > nb + m − a > 2nb + m − 2a > . . . > θnb + 1.

Note also that gcd(n, θnb + 1) = 1, therefore the characteristic exponents of γ are n = d2/b

and θnb + 1 = (d3−b)d2/ab + 1.
Finally, we show the most complicated case.

• Case B: By Lemma 3·7(a) and (b) we obtain that b = 1, hence we can write f as

f (x, y) = (x, yn + b1xyn−a + b2x2yn−2a + . . . + bηxηyn−ηa,

ym + c1xym−a + c2x2ym−2a + . . . + cθxθym−θa),

where η (respectively θ) is the greatest positive integer such that n − ηa ≥ 1 (respectively
m − θa ≥ 1).

Note that in this case the plane H = V(X) fails to be generic for f only because the condi-
tion (2) fails, since H contains the image of V(x), which is an irreducible component of D(f )
(see Lemma 3·7(a) and expression (10)).

Consider the one-parameter unfolding F : (C2 ×C, 0) → (C3 ×C, 0), F = (ft(x, y), t)
where ft:(C2, 0) → (C3, 0) is defined as

ft(x, y) = (x − tyn, yn + b1xyn−a + b2x2yn−2a + . . . + bηxηyn−ηa,

ym + c1xym−a + c2x2ym−2a + . . . + cθxθym−θa).
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Statement. We claim that F is Whitney equisingular (see Definition 4·3).
Proof of the Statement. We have that F is upper, that is, F adds in the i-coordinate function

of f only terms of weighted degree greater than or equal to di. Hence, F is topologically triv-
ial by [5, theorem 1]. By [7, corollary 40] (see also [2, theorem 6·2]) we have that μ(D(ft), 0)
is constant.

Let Cαi,t (respectively Ct) be the deformation of Cαi (respectively, C) induced by F. Note
that the restriction of ft to V(x) is generically 2-to-1 for any t. This means that Ct = V(x)
for any t, that is, F induces a trivial deformation of C, hence m(ft(Ct)) = n/2 for any t.
By expressions (8) and (9) we can see that either m(f (Cαi)) = a (if Cαi is an identification
component of D(f )) or m(f (Cαi)) = a/2 (if Cαi is a fold component of D(f )). Since F is
upper we see that the multiplicity of ft(Cαi,t) should be constant since F adds only terms
with degree greater than or equal to the degrees of the coordinate functions of ϕ̃αi (and

also ϕ
′
αi

(u)). Therefore, the multiplicity of ft(D(ft)) is constant. By [8, proposition 8·6 and
corollary 8·9] we conclude the F is Whitney equisingular, which proves the statement.

Note that H ∩ ft(C) = H ∩ C(ft(C)) = 0 for any t �= 0, where H = V(X) as above. Now,
note that H ∩ ft(Cαi,t ) = H ∩ C(ft(Cαi,t )) = 0 for any t. In fact, since F is Whitney equisingu-
lar, F(D(F)) is Whitney equisingular. Hence each family of curves ft(Cαi,t ) is Whitney equi-
singular (see [9, proposition 4·11(b)]). Since H ∩ f (Cαi) = H ∩ C(f (Cαi)) = 0 and ft(Cαi,t )
is Whitney equisingular, we conclude that for any t sufficiently small we should have that
H ∩ ft(Cαi,t ) = H ∩ C(ft(Cαi,t )) = 0. Therefore, we conclude that the plane H is generic for ft
for any t �= 0 small enough. Now, for t �= 0, a parametrisation of the transversal slice γft of ft
is given by:

ϕ(u) = (un + b1tun+n−a + . . . + bηtηuηn+n−ηa, um + c1tun+m−a + . . . + cθuθn+m−θa).
(11)

By Lemma 3·7 (b) we obtain that a is odd. Since n is even and a ≤ d2 = n, we have that
a < n. Therefore

n < m < n + m − a < . . .

and gcd(n, m, n + m − a) = 1.
Set ε := 1 + b1tun−a + . . . + bηtηuηn−ηa = (1 + A(u)) which is an invertible element in

O1 
C{u}. By [21, theorem 3 and 17] (see also [4, theorem 2·2]) we know that there exist
an invertible element ξ in O1 such that ξn = ε. We denote ε1/n := ξ . More precisely, we
have that

ε1/n = (1 + A(u))1/n =
∞∑

j=0

(
1/n

j

)
A(x)j = 1 + 1

n
A(x) +

1
n ( 1

n − 1)

2! A(x)2 + . . . ,

where

(
1/n

j

)
denotes the generalised binomial coefficient. Therefore,

(ε1/n)−1 = 1 − 1

n
b1un−a + . . . , (12)

where “ . . . " in (12) denotes the terms of degree strictly greater than n − a.
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Consider the isomorphism χ :(C, 0) → (C, 0) defined by χ(u) = u · (ε1/n)−1. Note that

ϕ ◦ χ(u) =
(

un, um
(

1−1

n
b1un−a+ . . .

)m

+c1tun+m−a
(

1−1

n
b1un−a+ . . .

)n+m−a

+ . . .

)
(13)

is a Puiseux parametrisation of γt, for t �= 0. Note also that m is the smallest power (with a
non-zero coefficient) that appears in the second coordinate function of ϕ ◦ χ in (13). Since
gcd(n, m) = 2, we obtain that the characteristic exponents of γt are n,m and k for some k > m
with gcd(n, m, k) = 1. By Lemmas 3·4 and 3·9 we obtain that

μ(γt, 0) = (n − 1)(m − 1) + (n − a) = n · m − 2m + k − n + 1.

Therefore, k = n + m − a. In particular, either b1 �= 0 or c1 �= 0 in (13). Now, since F
is Whitney equisingular, by [13, theorem 5·3] we have that μ(γt, 0) is constant along the
parameter space. Hence, the family of plane curves γt is topologically trivial. Therefore,
γ and γt, t �= 0, have the same embedded topological type by [1, theorem 5·2·2]. Thus we
conclude that the characteristic exponents of γ are n = d2, m = d3 and n + m − a = d2 +
d3 − a.

Now we are able to present a proof of Theorem 1·1.
Proof of Theorem 1·1: Except in the case where a ≤ d2, 4 ≤ d2/b and gcd(d2, d3) = 2 (cor-

responding to the Case C of Proposition 3·10), we have that γ has only two characteristic
exponents, namely, n = d2/b and k, where k is described in each case by Propositions 3·5
and 3·10. By Lemma 3·4 we have that:

μ(γ , 0) = (n − 1)(k − 1) = 1

ab2

(
(d2 − b)(d3 − b)c + sab(d2 − c)

)
.

This implies that

k =
(

(d2 − c)(d3 − b) · c + (d2 − c) · sab

ab(d2 − b)

)
+ 1

where c = min{a, d2}, s = 0 if the restriction of f to the line x = 0 is generically 1−to−1, or
s = 1, otherwise.

Remark 3·11. Note that Theorem 1·1 shows that the answer to Question 1 is in the pos-
itive. In fact, we only need to show that the number s is determined by the weights and
degrees, at least in the cases where s is fundamental to determine the embedded topological
type of the transversal slice of f. To see this, one can check that:

(1) If m(f (C2)) ≥ 3, then s = 1 or s = 0 otherwise (see Lemma 3·7(a)).
Now, suppose that m(f (C2)) = 2, hence we have that d3 = as + rab and r · a is even,
where r is describe in Lemma 3·7 (d). Then:
(2) if b �= 1, then s = 1 if d3 ≡ a(mod b) or s = 1, otherwise;
(3) if b = 1 and a is odd, then s = 1 if d3 ≡ 1(mod 2) or s = 1, otherwise;
(4) if b = 1 and a is even, it seems that s may be not determined precisely by a relation
between the weight and degrees of f. However, in this case Theorem 1·1 says that the
characteristic exponents of γ are:
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2 and
d3 − 1

a
+ 1.

Therefore, in this case the embedded topological type of γ does not depends on the value
of s. We conclude that in any situation (except situation (4) which does not depend on s)
the number s is determined by the weights and degrees of f. For instance, the characteristic
exponents of γ for any corank 1, finitely determined, quasi-homogeneous map germ of type
(1, 4, 6;1, 1) are 4,6,9, since in this case c = s = 1 in Theorem 1·1.

We finish this section with an example describing the transversal slice of a corank 1,
finitely determined, quasi-homogeneous map germ of type (1, 4, 6;1, 1).

Example 3·12. ([24, example 5·5]). Consider the map germ f : (C2, 0) → (C3, 0) defined
as

f (x, y) = (x, y4, x5y − 5x3y3 + 4xy5 + y6).

It is a corank 1, finitely determined, quasi-homogeneous map germ of type (1, 4, 6;1, 1).
Thus, c = 1 and s = 1 and by Theorem 1·1 we conclude that the characteristic exponents of
the transversal slice of f are 4, 6 and 9.

4. Some applications, natural questions and examples

In this section, we present two natural consequences of Theorem 1·1. We also consider
some natural questions and provide counterexamples for them. We finish this section pre-
senting examples to illustrate our results. For the computations we have made use of the
software Singular [6] and the implementation of Mond–Pellikaan’s algorithm given by
Hernandes, Miranda and Peñafort–Sanchis in [11]. Alternatively, the reader can consult [27,
proposition 4·29] for a description of the presentation matrix of the push-forward module
f∗O2 over O3 for maps germs in the form f (x, y) = (xk, yn, h(x, y)).

4·1. Some applications

As a direct consequence of Theorem 1·1, we present a necessary condition for a corank 1
finitely determined map germ to be quasi-homogeneous with respect to some system of
coordinates.

COROLLARY 4·1. Consider a corank 1, finitely determined map germ g:(C2, 0) →
(C3, 0) of multiplicity n. Then, the following conditions are necessary for the existence of
suitable coordinates in which g is quasi-homogeneous.

The transversal slice γg of g has:
Condition (a): either two characteristic exponents, namely n and l for some l > n, or
Condition (b): three characteristic exponents, namely, n < m < k, with gcd(n, m) = 2 and

k = n + m − a for some m and a.

Proof. It follows directly by Theorem 1·1.

It follows by Saito’s criterion for quasi-homogeneity of isolated hypersurfaces singulari-
ties [25] that if f is a corank 1 finitely determined map germ, then μ(D(g), 0) = τ ((D(g), 0),
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where τ denotes the Tjurina number. We remark also that another important necessary con-
dition for the existence of suitable coordinates in which g is quasi-homogeneous is that the
image Milnor number μI(g) should be equal to the Ae-codimension (Mond’s τ ≤ μ-type
inequality, see for instance [19]).

Example 4·2. Consider the map germ g:(C2, 0) → (C3, 0) defined by

g(x, y) = (x, y8, y12 + y14 + y15 + x11y).

It is a corank 1 finitely determined map germ. One can check that the transversal slice of
g has four characteristic exponents: 8,12,14 and 15. Hence, there is no system of coordinates
such that g is quasi-homogeneous.

Using Singular we found that μ(D(g), 0) = 5978 > 4575 = τ (D(g), 0), which is another
way to check that g is not quasi-homogeneous.

Another consequence of Theorem 1·1, is about Whitney equisingularity of a one-
parameter unfolding of f .

Definition 4·3. Given an unfolding F : (C2 ×C, 0) → (C3 ×C, 0) defined by F(x, y, t) =
(ft(x, y), t), we assume it is origin preserving, that is, ft(0, 0) = (0, 0) for any t. Hence, we
have a 1-parameter family of map germs ft:(C2, 0) → (C3, 0). We say that F is Whitney
equisingular if there is a representative of F which admits a regular stratification so
that the parameter axes S = {(0, 0) ×C⊂C

2 ×C and T = {(0, 0, 0)} ×C⊂C
3 ×C are

strata.

COROLLARY 4·4. Let f : (C2, 0) → (C3, 0) be a corank 1, finitely determined quasi-
homogeneous map germ. Consider an one-parameter unfolding F : (C2 ×C, 0) → (C3 ×
C, 0), F(x, y, t) = (ft(x, y), t). Write ft as:

ft(x, y) = (x + gt(x, y), p̃(x, y) + ht(x, y), q̃(x, y) + lt(x, y)).

If F adds only terms of the same degrees as the degrees of f, that is, ft is quasi-
homogeneous of the same type as f, then F is Whitney equisingular. In particular, m(ft(C2))
is constant along the parameter space.

Proof. By [5, theorem 1] we have that F is topologically trivial. Hence, by Theorem 2·5
we have that μ(D(ft), 0) is constant. Note that f and ft are quasi-homogeneous of the same
type. By Theorem 1·1 we have that the embedded topological type of the transversal slice γt

of ft is the same for any t. Hence, μ(γt, 0) is constant and therefore F is Whitney equisingular
by [13, theorem 5·3].

Remark 4·5.

(a) We note that if F adds some term of degree strictly greater than the degrees of f then
it is topologically trivial but it may be not Whitney equisingular (see [24, 5.5]).

(b) If g has corank 1 (and it is not necessarily quasi-homogeneous), Marar and Nuño–
Ballesteros present in [12, corollary 4·7] a characterization of Whitney equisingularity
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of F in terms of the constancy of the invariants C, T and J along the parameter space.
If g is quasi-homogeneous, Mond shows in [18] (for any corank) that the invariants
C and T are determined by the weights and degrees of g. The author shows in [26,
theorem 3·2] that the invariant J is also determined by the weights and degrees of f.
Hence, it gives another proof of Corollary 4·4.

4·2. Natural questions and examples

We note that Question 1 also makes sense for quasi-homogeneous finitely determined
map germs of corank 2. More precisely, one can consider the following natural question.

Question 2. Let f : (C2, 0) → (C3, 0) be a corank 2 quasi-homogeneous finitely deter-
mined map germ. Is the embedded topological type of the transversal slice γ of f determined
by the weights and degrees of f ?

The following example shows that the answer to Question 2 is in the negative.

Example 4·6. Consider the map germs gi:(C2, 0) → (C3, 0), defined by

g1(x, y) = (x2 + xy, y3, (x + y)5), g2(x, y) = (x2 − xy + y2, y3, (x + y)5)

and g3(x, y) = (x2, y3, (x + y)5).

Each gi is a homogeneous finitely determined map germ of corank 2, of same type,
(2, 3, 5;1, 1) (see [23, example 16] and [24, example 5.4]). The transversal slice of g1 and g2

has two branches, which we will denoted by γ 1
i and γ 2

i . On the other hand, the transversal
slice of g3 is an irreducible curve, which will denote by γ = γ 1

3 .
We recall that topological type of a plane curve determines and is determined by the

characteristic exponents of each branch and by the intersection multiplicities of the branches.
In this way, Table 2 shows that the embedded topological type of these three transversal
slices are distinct.

Table 2. Topological invariants for the transversal slice of gi

gi(x, y) Characteristic Characteristic Intersec.
Exponents of γ 1

i Exponents of γ 2
i Mult.

(x2 + xy, y3, (x + y)5) 3, 5 3, 5 15
(x2 − xy + y2, y3, (x + y)5) 3, 5 3, 5 16
(x2, y3, (x + y)5) 6, 10, 11 – –

Fixed the weights and degrees of a corank 2 finitely determined map germ f from (C2, 0)
to (C3, 0), it seems that there is a finite number of distinct topological types for γ . We
propose the following problem:

Problem. Fix the weights and degrees of a corank 2 finitely determined map germ f from
(C2, 0) to (C3, 0), determine all possible distinct topological types that the transversal slice
of f can have.
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Since Theorem 1·1 does not extend to the corank 2 case, one might think that the hypoth-
esis of corank 1 must be a special condition that could be considered in other cases. Thus,
another natural question is the following one:

Question 3. Let f : (Cn, 0) → (Cn+1, 0), with n ≥ 3 be a corank 1 quasi-homogeneous
finitely determined map germ.

(a) Is the embedded topological type of a generic hyperplane section of f determined by
the weights and degrees of f ?

(b) Is the Corollary 4·1 true in this case? That is, a one-parameter unfolding F = (ft, t)
of f which adds only terms of the same degrees as the degrees of f is Whitney
equisingular?

The following example shows that the answers to Question 3 (a) and Question 3 (b) are
in the negative.

Example 4·7. Consider the families of map germs ft:(C3, 0) → (C4, 0) defined by

ft(x, y, z) = (x, y, z2, z(x5 + yz14 + y15 + txz12)).

We have that each ft is a corank 1 finitely determined map germ of same type, i.e, the
deformation of f0 only adds terms of same weighted degrees. However, this family is not
Whitney equisingular ([5, example 6.2]). One can check also that the generic hyperplane
sections γ0 and γt have distinct embedded topological types.

We finish this work by presenting in Table 3 the characteristic exponents for the
transversal slice γ of each map germ in Mond’s list [17, p.378].

Table 3. Characteristic exponents for γ of quasi-homogeneous map germs in Mond’s list

Name f (x,y) Quasi-homogeneous type c s Char. exp.

Cross-Cap (x, y2, xy) (1, 2, 2;1, 1) 1 1 2, 3
Sk, k ≥ 1 odd (x, y2, y3 + xk+1y) (1, k + 1, 3(k+1)

2 ;1, k+1
2 ) 1 0 2, 3

Sk, k ≥ 1 even (x, y2, y3 + xk+1y) (2, 2k + 2, 3k + 3;2, k + 1) 2 0 2, 3
Bk, k ≥ 3 (x, y2, y2k+1 + x2y) (k, 2, 2k + 1;k, 1) 2 0 2, 5
Ck, k ≥ 3 odd (x, y2, xy3 + xky) (1, k − 1, 3k−1

2 ;1, k−1
2 ) 1 1 2, 5

Ck, k ≥ 3 even (x, y2, xy3 + xky) (2, 2k − 2, 3k − 1;2, k − 1) 2 1 2, 5
F4 (x, y2, y5 + x3y) (4, 6, 15;4, 3) 4 0 2, 5
Hk (x, y3, y3k−1 + xy), k ≥ 2 (3k − 2, 3, 3k − 1;3k − 2, 1) 3 0 3, 4
T4 (x, y3 + xy, y4) (2, 3, 4;2, 1) 2 0 3, 4
P3 (x, y3 + xy, cy4 + xy2)∗ (2, 3, 4;2, 1) 2 0 3, 4

∗ c �= 0, 1/2, 1, 3/2.

Remark 4·8. We note that all figures used in this work were created by the author using
the software SURFER [28].
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