We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct adelic objects for rank two integral structures on arithmetic surfaces and develop measure and integration theory, as well as elements of harmonic analysis. Using the topological Milnor K2-delic and K1×K1-delic objects associated to an arithmetic surface, an adelic zeta integral is defined. Its unramified version is closely related to the square of the zeta function of the surface. For a proper regular model of an elliptic curve over a global field, a two-dimensional version of the theory of Tate and Iwasawa is derived. Using adelic analytic duality and a two-dimensional theta formula, the study of the zeta integral is reduced to the study of a boundary integral term. The work includes first applications to three fundamental properties of the zeta function: its meromorphic continuation and functional equation and a hypothesis on its mean periodicity; the location of its poles and a hypothesis on the permanence of the sign of the fourth logarithmic derivative of a boundary function; and its pole at the central point where the boundary integral explicitly relates the analytic and arithmetic ranks.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.