We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a methodology to obtain the wrench capabilities of a kinematically redundant planar parallel manipulator using a wrench polytope approach. A methodology proposed by others for non-redundant and actuation-redundant manipulators is adapted to a kinematically redundant manipulator. Four wrench capabilities are examined: a pure force analysis, the maximum force for a prescribed moment, the maximum reachable force, and the maximum moment with a prescribed force. The proposed methodology, which finds the exact explicit solution for three of the four wrench capabilities, does not use optimization and is very efficient.
This paper is organized in two parts. In Part I, the wrench polytope concept is presented and wrench performance indices are introduced for planar parallel manipulators (PPMs). In Part II, the concept of wrench capabilities is extended to redundant manipulators and the wrench workspace of different PPMs is analyzed. The end-effector of a PPM is subject to the interaction of forces and moments. Wrench capabilities represent the maximum forces and moments that can be applied or sustained by the manipulator. The wrench capabilities of PPMs are determined by a linear mapping of the actuator output capabilities from the joint space to the task space. The analysis is based upon properly adjusting the actuator outputs to their extreme capabilities. The linear mapping results in a wrench polytope. It is shown that for non-redundant PPMs, one actuator output capability constrains the maximum wrench that can be applied (or sustained) with a plane in the wrench space yielding a facet of the polytope. Herein, the determination of wrench performance indices is presented without the expensive task of generating polytopes. Six study cases are presented and performance indices are derived for each study case.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.