Discussions on the age and the depositional environments of the Veldhoven Formation and its members are persistent in Belgium and the Netherlands. Uncertainties on stratigraphy and the constructive process of sediment accumulation continue today as a result of lack of data on this succession within the Roer Valley Rift System. The present study provides new information on the bio- and lithostratigraphy and facies from two boreholes based on dinoflagellate cyst taxa. The results were correlated by gamma-ray logs towards other key boreholes in the region and show a good consistency for stratigraphy and depositional environments for the members of the Veldhoven Formation.
After marginal to restricted marine conditions in the latest Rupelian (early Oligocene), the start of deposition of the Veldhoven Formation marked the transition towards a higher sea level, expressed by increased glauconite contents and gamma-ray values. The Voort Member in the lower part of the Veldhoven Formation has an early to late Chattian (Late Oligocene) age and comprises predominantly shallow marine (fluctuating restricted to open marine) conditions. The lithology in the lower part of this unit is often very clayey but is coarsening upward into sands. The superjacent Wintelre Member has a latest Chattian to early Aquitanian (early Miocene) age. This member is distinct by its clayey nature which is expressed by relatively high gamma-ray values. Earlier studies suggest a deeper marine facies for the Wintelre Member compared to the Someren and Voort members. However, the dinoflagellate cyst assemblages in this unit are mostly dominated by a single genus indicating a restricted marine setting, including salinities that deviate from normal marine conditions, most probably due to minor ventilation by narrow or lack of connection to the Atlantic Ocean. A glacio-eustatic sea-level fall around the Oligocene/Miocene boundary limited the sea coverage to the strongest subsiding areas, where deposition of the Wintelre Member is recorded, while non-deposition or erosion occurred in the surrounding highs, hence creating an isolated (sub)basin. The superjacent Someren Member was deposited during the late Aquitanian to middle Burdigalian and consists of shallow to open marine clayey fine sands. Increasing clay contents indicate a gradual development towards a higher sea level, which coincide with upward increasing gamma-ray values.
The biostratigraphic results of this study suggest that no major hiatuses are present in the differentially subsiding blocks of the Roer Valley Rift System during the late Oligocene to early Miocene.