We obtain an equivalent implicit characterization of Lp Banach spaces that is amenable to a logical treatment. Using that, we obtain an axiomatization for such spaces into a higher order logical system, the kind of which is used in proof mining, a research program that aims to obtain the hidden computational content of mathematical proofs using tools from mathematical logic. As an aside, we obtain a concrete way of formalizing Lp spaces in positive-bounded logic. The axiomatization is followed by a corresponding metatheorem in the style of proof mining. We illustrate its use with the derivation for this class of spaces of the standard modulus of uniform convexity.