The problem of distributing two conducting materials with a prescribed volume ratio in aball so as to minimize the first eigenvalue of an elliptic operator with Dirichletconditions is considered in two and three dimensions. The gap ε between the twoconductivities is assumed to be small (low contrast regime). The main result of the paperis to show, using asymptotic expansions with respect to ε and to small geometricperturbations of the optimal shape, that the global minimum of the first eigenvalue in lowcontrast regime is either a centered ball or the union of a centered ball and of acentered ring touching the boundary, depending on the prescribed volume ratio between thetwo materials.