Consider an independent site percolation model on Z
d
, with parameter p ∈ (0, 1), where all long-range connections in the axis directions are allowed. In this work we show that, given any parameter p, there exists an integer K(p) such that all binary sequences (words) ξ ∈ {0, 1}
N
can be seen simultaneously, almost surely, even if all connections with length larger than K(p) are suppressed. We also show some results concerning how K(p) should scale with p as p goes to 0. Related results are also obtained for the question of whether or not almost all words are seen.