We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this study, we assessed the acute changes in biventricular longitudinal strain after atrial septal defect transcatheter closure and its relation to the device size.
Methods:
Hundred atrial septal defect patients and 40 age-matched controls were included. Echocardiography and strain study were performed at baseline and 24 hours and 1 month after the intervention. The study group was divided into two subgroups; group 1: smaller devices were used (mean device size = 1.61 ± 0.05 cm, n = 74) and group 2: larger devices were used (mean device size = 2.95 ± 0.07 cm, n = 26).
Results:
At baseline, there was a significant difference between the study group and controls as regards right ventricular global longitudinal strain with significant hyperkinetic apex (p = 0.033, p = 0.020, respectively). There was a significant immediate reduction in right ventricular global longitudinal strain (from −24.43 ± 0.49% to −21.62 ± 0.47%, p < 0.001), which showed insignificant improvement after 1-month follow-up. While only left ventricular global longitudinal strain increased after 1 month. Within 24 hours of device closure, all the basal- and mid-lateral segments strains and apical right ventricular strains showed a significant reduction. There was a significant negative correlation between the indexed large device size and an immediate change in the right ventricular global longitudinal strain (r = −0.425, p = 0.034).
Conclusion:
Significant right ventricular global longitudinal strain reduction starts as early as 24 hours after transcatheter closure, irrespective of the device size used. The rapid impact of closure was mainly on the biventricular basal and lateral segments and right ventricular apical ones, especially with the large sized atrial septal defect.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.