Sixteen Holstein Friesian cows were offered ad libitum a forage mixture of three parts (dry-matter (DM) basis) maize silage (starch and neutral-detergent fibre (NDF) 324 and 395 g/kg DM) and one part grass silage (NDF 518 g/kg DM) in a 4 ✕ 4 Latin-square change-over design experiment using four periods each of 4 weeks. Cows were housed in a cubicle house, bedded on sand and given food through Calan gates. The four supplement treatments were control (no oil supplement, C); 1·5 kg/day processed crushed linseed (PL); 1·5 kg/day crushed linseed (L) and 0·6 kg/day marine algae (A) providing 0, 440, 423 and 109 g/day of oil respectively. Cows also received a pelleted concentrate in three equal meals (12·0, 10·5, 10·5 and 11·2 kg/day for C, PL, L and A respectively) containing (g/kg DM) 260, 203, 288 and 74 of crude protein, NDF, starch and water-soluble carbohydrate respectively. Oil supplementation depressed (P < 0·05) forage intake (11·2, 10·3, 10·1 and 10·1 kg DM per day) but milk yield was unaffected (P > 0·05) by treatment (mean 35·9 kg/day). Milk fat concentrations were low and further depressed (P < 0·05) by algal supplementation (33·5, 32·3, 32·3 and 25·6 g/kg). Algal supplementation caused a three-fold increase in the concentrations of (n-3) long chain (>C20) polyunsaturated fatty acids in milk fat (to 0·51 g/100 g fat) representing a transfer efficiency from diet to milk of ca. 5%. Oil supplementation increased levels of all trans monoenes in milk but the effect was much greater for treatment A (P < 0·05) and for trans-10 C18: 1 (1·52, 1·94, 1·72 and 6·12 g/100 g milk fat for C, PL, L and A respectively). Trans-10 C18: 1 was the predominant trans monoene in milk fat for all treatments (47·7, 45·2, 45·6 and 67·4% of total). Treatment A also caused the greatest increases (P < 0·05) in conjugated linoleic acid (CLA to 0·54, 0·69, 0·65 and 0·97 g/100 g milk fat). Although mainly cis-9, trans-11, a small proportion (4·8 to 5·5%) of the CLA was identified as the trans-10, cis-12 isomer for all treatments. This pattern of isomers of trans monoenes and CLA, which may have implications for the health properties of the milk, may be related to effects on rumen function caused by the high starch intakes (5·75, 5·09, 5·11 and 5·27 kg/day).