We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We generalize Condition (K) from directed graphs to Boolean dynamical systems and show that a locally finite Boolean dynamical system
$({{\mathcal {B}}},{{\mathcal {L}}},\theta )$
with countable
${{\mathcal {B}}}$
and
${{\mathcal {L}}}$
satisfies Condition (K) if and only if every ideal of its
$C^*$
-algebra is gauge-invariant, if and only if its
$C^*$
-algebra has the (weak) ideal property, and if and only if its
$C^*$
-algebra has topological dimension zero. As a corollary we prove that if the
$C^*$
-algebra of a locally finite Boolean dynamical system with
${{\mathcal {B}}}$
and
${{\mathcal {L}}}$
countable either has real rank zero or is purely infinite, then
$({{\mathcal {B}}}, {{\mathcal {L}}}, \theta )$
satisfies Condition (K). We also generalize the notion of maximal tails from directed graph to Boolean dynamical systems and use this to give a complete description of the primitive ideal space of the
$C^*$
-algebra of a locally finite Boolean dynamical system that satisfies Condition (K) and has countable
${{\mathcal {B}}}$
and
${{\mathcal {L}}}$
.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.