We study the notion of tightly stationary sets which was introduced by Foreman and Magidor in [8]. We obtain two consistency results showing that certain sequences of regular cardinals ${\langle {\kappa _n}\rangle _{n < \omega }}$ can have the property that in some generic extension, every ground-model sequence of fixed-cofinality stationary sets ${S_n} \subseteq {\kappa _n}$ is tightly stationary. The results are obtained using variations of the short-extenders forcing method.