We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a problem related to the spin-coating process in which a fluid coats a rotating surface. Our interest lies in the contact-line region for which we propose a simplified travelling wave approximation. We construct solutions to this problem by a shooting method that matches solution branches in the contact-line region and in the interior of the droplet. Furthermore, we prove uniqueness and qualitative properties of the solution connected to the fourth-order nature of the equation, such as a global maximum in the film height close to the contact line, elevated from the average height of the film.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.