We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Phosphorus nitride (PN) is believed to be one of the major reservoirs of phosphorus in the interstellar medium (ISM). For this reason, understanding which reactions produce PN in space and predicting their rate coefficients is important for modelling the relative abundances of P-bearing species and clarifying the role of phosphorus in astrochemistry. In this work, we explore the potential energy surfaces of the $\textrm{P}(^4\textrm{S}) + \textrm{NH}(^3\Sigma^-)$ and $\textrm{N}(^4\textrm{S}) + \textrm{PH}(^3\Sigma^-)$ reactions and the formation of $\textrm{H}(^2\textrm{S}) + \textrm{PN}(^1\Sigma^+)$ through high accuracy ab initio calculations and the variable reaction coordinate transition state theory (VRC-TST). We found that both reactions proceed without an activation barrier and with similar rate coefficients that can be described by a modified Arrhenius equation ($k(T)=\alpha\!\left( T/300 \right)^{\beta} \exp\!{(\!-\!\gamma/T)})$ with $\alpha=0.93\times 10^{-10}\rm cm^3\,s^{-1}$, $\beta=-0.18$ and $\gamma=0.24\, \rm K$ for the $\textrm{P} + \textrm{NH} \longrightarrow \textrm{H} + \textrm{PN}$ reaction and $\alpha=0.88\times 10^{-10}\rm cm^3\,s^{-1}$, $\beta=-0.18$ and $\gamma=1.01\, \rm K$ for the $\textrm{N} + \textrm{PH} \longrightarrow \textrm{H} + \textrm{PN}$ one. Both reactions are expected to be relevant for modelling PN abundances even in the cold environments of the ISM. Given the abundance of hydrogen in space, we have also predicted rate coefficients for the destruction of PN via H + PN collisions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.