An iterative solver based on the immersed interface method is proposed to solve the pressure in a two-fluid flow on a Cartesian grid with second-order accuracy in the infinity norm. The iteration is constructed by introducing an unsteady term in the pressure Poisson equation. In each iteration step, a Helmholtz equation is solved on the Cartesian grid using FFT. The combination of the iteration and the immersed interface method enables the solver to handle various jump conditions across two-fluid interfaces. This solver can also be used to solve Poisson equations on irregular domains.