We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It has been suggested that dust generation was closely linked to the development of global ice sheets and/or cooling. This feature has allowed Asian dust to be a potential chronostratigraphic tool in North Pacific Ocean (NPO) sediments. The orbital-scale age control in NPO sediments is usually established by adjusting the benthic-foraminiferal δ18O to the global δ18O stack (LR04). However, it would become difficult if the sediments did not contain enough foraminifera. This study investigates Sr and Nd isotopes, trace elements, mineralogy and grain size of the ‘operationally defined aeolian dust’ (ODED) extracted from the sediments recovered at Ocean Drilling Program (ODP) site 1209B on the Shatsky Rise in the NPO covering the past five glacial–interglacial cycles. The geochemical results show that the ODED at site 1209B is actually a mixture of Asian dust and volcanic ash. The variation of Nd isotope mimics the cycles of glacial–interglacial ice sheets as revealed by the global benthic foraminifera’s oxygen isotope stack (LR04) over the past 500 ka. The low (high) ϵNd values corresponded with the cool (warm) periods. We propose that ϵNd variation reflects the evolving aeolian dust in site 1209 sediments. The excellent agreement between ϵNd values at site 1209B and LR04 stack over the past 500 ka allows establishing the orbital-timescale age control by tuning ϵNd to the LR04 curve. We thus propose that Nd isotope provides a chronostratigraphic technique in NPO sediments, especially for sediments with a limited amount of foraminifera.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.