As we move ever closer to the Square Kilometre Array era, support for real-time, interactive visualisation and analysis of tera-scale (and beyond) data cubes will be crucial for on-going knowledge discovery. However, the data-on-the-desktop approach to analysis and visualisation that most astronomers are comfortable with will no longer be feasible: tera-scale data volumes exceed the memory and processing capabilities of standard desktop computing environments. Instead, there will be an increasing need for astronomers to utilise remote high performance computing (HPC) resources. In recent years, the graphics processing unit (GPU) has emerged as a credible, low cost option for HPC. A growing number of supercomputing centres are now investing heavily in GPU technologies to provide O(100) Teraflop/s processing. I describe how a GPU-powered computing cluster allows us to overcome the analysis and visualisation challenges of tera-scale data. With a GPU-based architecture, we have moved the bottleneck from processing-limited to bandwidth-limited, achieving exceptional real-time performance for common visualisation and data analysis tasks.