Shifting to cycling in urban areas reduces greenhouse gas emissions and improves public health. Access to street-level data on bicycle traffic would assist cities in planning targeted infrastructure improvements to encourage cycling and provide civil society with evidence to advocate for cyclists’ needs. Yet, the data currently available to cities and citizens often only comes from sparsely located counting stations. This paper extrapolates bicycle volume beyond these few locations to estimate street-level bicycle counts for the entire city of Berlin. We predict daily and average annual daily street-level bicycle volumes using machine-learning techniques and various data sources. These include app-based crowdsourced data, infrastructure, bike-sharing, motorized traffic, socioeconomic indicators, weather, holiday data, and centrality measures. Our analysis reveals that crowdsourced cycling flow data from Strava in the area around the point of interest are most important for the prediction. To provide guidance for future data collection, we analyze how including short-term counts at predicted locations enhances model performance. By incorporating just 10 days of sample counts for each predicted location, we are able to almost halve the error and greatly reduce the variability in performance among predicted locations.