We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The formation of a pronival (protalus) rampart on sub-Antarctic Marion Island is investigated. Morphological attributes show debris at the angle of repose on the rampart's proximal slope and at a lower angle on the distal slope. Relative-age dating, based on the percentage moss cover and weathering rind thickness of the clastic component, indicates accumulation mainly on the proximal slope and rampart crest, implying upslope (retrogressive) accumulation. This contrasts with a previously published model for pronival ramparts, which proposes rampart growth by addition of material to the distal slope. Development of the Marion Island rampart is suggested to result from the control exerted by a relatively low-angled surface and a shrinking snowbed. A small debris step formed on the proximal slope appears to be a response to decreased snowfalls due to changing climate over the last c. 50 years. Growth rate of the rampart is considered to be variable during the Holocene in response to changes in climate and debris supply.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.