We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Comparative mixing of a Mach 2 elliptical free jet from a convergent-divergent elliptic nozzle with an aspect ratio of 2:1 in the presence of adverse and marginally favourable pressure gradients has been studied experimentally. It is found that the mixing of the elliptical jet is higher than that for the equivalent circular jet at all the levels of expansion. The decay of elliptic jet is significantly higher than the equivalent circular jet in all three zones of the jet field – the core, characteristic decay and fully developed regions. The reason for the faster decay of the elliptic jet is found to be the continuous variation in the size of the mixing-promoting vortices shed from the nozzle exit owing to its azimuthal asymmetry. The evolution of the jet and its axis-switching phenomenon has been studied using iso-pitot pressure contours taken at different axial locations in the plane normal to the jet axis. As expected, the elliptic jet spreads faster along the minor axis plane than the major axis plane, leading to axis-switching at all the levels of expansion studied. The axis-switching of the elliptic jet shifts upstream with increase in nozzle pressure ratio (NPR) from 4 to 5; from 5 to 7, it shifts downstream. But at marginally under-expanded condition of NPR 8, the axis-switching is found to shift slightly upstream. The occurrence of axis-switching in the elliptic jet indicates enhanced near-field mixing, compared to the equivalent circular jet. The shadowgraph pictures of the jet reveal that the waves prevailing in the elliptic jet are significantly weaker than those in the circular jet.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.