Let 1≤p <∞ and 1/p+1/q = 1. If φ ∈ Lq, we denote by Tφ the functional defined on the Hardy space Hp by . A function f in Hp, which satisfies Tpφ(f) = ‖Tpφ‖ and ‖f‖p ≤ 1, is called an extremal function. Also, φ is called an extremal kernel when ‖φ‖q =‖Tpφ‖. In this paper, using the results in the case of p = 1, we study extremal kernel and extremal functions for p > 1.