In this study, we propose new risk measures from a regulator’s perspective on the regulatory capital requirements. The proposed risk measures possess many desired properties, including monotonicity, translation-invariance, positive homogeneity, subadditivity, nonnegative loading, and stop-loss order preserving. The new risk measures not only generalize the existing, well-known risk measures in the literature, including the Dutch, tail value-at-risk (TVaR), and expectile measures, but also provide new approaches to generate feasible and practical coherent risk measures. As examples of the new risk measures, TVaR-type generalized expectiles are investigated in detail. In particular, we present the dual and Kusuoka representations of the TVaR-type generalized expectiles and discuss their robustness with respect to the Wasserstein distance.