We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many complex systems can be modeled via Markov jump processes. Applications include chemical reactions, population dynamics, and telecommunication networks. Rare-event estimation for such models can be difficult and is often computationally expensive, because typically many (or very long) paths of the Markov jump process need to be simulated in order to observe the rare event. We present a state-dependent importance sampling approach to this problem that is adaptive and uses Markov chain Monte Carlo to sample from the zero-variance importance sampling distribution. The method is applicable to a wide range of Markov jump processes and achieves high accuracy, while requiring only a small sample to obtain the importance parameters. We demonstrate its efficiency through benchmark examples in queueing theory and stochastic chemical kinetics.
Systems of stochastic chemical kinetics are modeled as infinite level-dependent quasi-birth-and-death (LDQBD) processes. For these systems, in contrast to many other applications, levels have an increasing number of states as the level number increases and the probability mass may reside arbitrarily far away from lower levels. Ideas from Lyapunov theory are combined with existing matrix-analytic formulations to obtain accurate approximations to the stationary probability distribution when the infinite LDQBD process is ergodic. Results of numerical experiments on a set of problems are provided.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.