We propose a simple numerical method for capturing thesteady state solution of hyperbolic systems with geometricalsource terms. We usethe interface value, rather than the cell-averages, for the source terms that balance the nonlinear convectionat the cell interface, allowing the numerical capturing of the steadystate with a formal high order accuracy. This method applies to Godunovor Roe type upwind methods butrequires no modification of the Riemann solver. Numerical experiments on scalar conservationlaws and the one dimensional shallow water equationsshow much better resolution of the steady state than the conventionalmethod, with almost no new numerical complexity.