Modeling and forecasting of mortality rates are closely related to a wide range of actuarial practices, such as the designing of pension schemes. To improve the forecasting accuracy, age coherence is incorporated in many recent mortality models, which suggests that the long-term forecasts will not diverge infinitely among age groups. Despite their usefulness, misspecification is likely to occur for individual mortality models when applied in empirical studies. The reliableness and accuracy of forecast rates are therefore negatively affected. In this study, an ensemble averaging or model averaging (MA) approach is proposed, which adopts age-specific weights and asymptotically achieves age coherence in mortality forecasting. The ensemble space contains both newly developed age-coherent and classic age-incoherent models to achieve the diversity. To realize the asymptotic age coherence, consider parameter errors, and avoid overfitting, the proposed method minimizes the variance of out-of-sample forecasting errors, with a uniquely designed coherent penalty and smoothness penalty. Our empirical data set include ten European countries with mortality rates of 0–100 age groups and spanning 1950–2016. The outstanding performance of MA is presented using the empirical sample for mortality forecasting. This finding robustly holds in a range of sensitivity analyses. A case study based on the Italian population is finally conducted to demonstrate the improved forecasting efficiency of MA and the validity of the proposed estimation of weights, as well as its usefulness in actuarial applications such as the annuity pricing.