To control force accurately under a wide range of behavioral conditions, the central nervous system would either require a detailed, continuously updated representation of the state of each muscle (and the load against which each is acting) or else force feedback with sufficient gain to cope with variations in the properties of the muscles and loads. The evidence for force feedback with adequate gain or for an appropriate central representation is not sufficient to conclude that force is the major controlled variable in normal limb movements.
Morton's hypothesis, that length is controlled by a follow-up servo, has a number of difficulties related to the delays, gains, variability, and specificity in feedback pathways comprising potential servo loops. However, experimental evidence is consistent with these pathways providing servo assistance for some movements produced by coactivation of α- and static γ-motoneurons. Dynamic γ-motoneurons may provide an additional input for adaptive control of different types of movements.
The idea that feedback is used to compensate for changes in muscle stiffness has received experimental support under static postural conditions. However, reflexes tend to increase rather than decrease the range of variation in muscle stiffness during some cyclic movements. Theoretical problems associated with the regulation of stiffness are also discussed. The possibilities of separate control systems for velocity or viscosity are considered, but the evidence is either negative or lacking. I conclude that different physical variables can be controlled depending on the type of limb movement required. The concept of stiffness regulation is also useful under some conditions, but should probably be extended to the regulation of the visco-elastic properties (i.e., the mechanical impedance) of a muscle or joint.