During the past few decades there has been a notable increase in the demand for poultry meat due to its low cost, good nutritional profile and suitability for further processing. Moreover, current forecasts and projection studies have predicted that the expansion of the poultry market will continue in the future. This growing demand has led to progressive improvements in genetic selection to produce fast-growing broilers, inducing the appearance of several spontaneous, idiopathic muscle abnormalities along with an increased susceptibility to stress-induced myopathy. Such muscle abnormalities have several implications for the quality of fresh and processed products, as breast meat that is affected by deep pectoral myopathy is usually rejected due to its unacceptable appearance. In addition, pale, soft and exudative like meat has a low processing ability due to its reduced water holding capacity, soft texture and pale colour. Finally, the high incidence of abnormalities observed in chicken breast muscles such as white striping (characterised by superficial white striations) and wooden breast (characterised by pale and bulging areas of substantial hardness) impair both the appearance and technological traits of breast meat. This review evaluates the consequences of genetic selection on muscle traits and describes the relevance of major breast abnormalities on nutritional, technological, sensorial and microbial characteristics of raw and processed meat.