We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The self-referential memory (SRM) effect refers to the phenomenon that stimuli processed with reference to the self are better remembered than those referenced to others. Studies have shown that schizophrenia patients do not have this memorial advantage for self-referenced information. The current study investigated the electrophysiological mechanism of the abolished SRM effect in schizophrenia.
Method
Twenty schizophrenia patients and 22 controls were recruited to complete an SRM task. We used a high-time resolution event-related potential (ERP) technique to analyze the electrophysiological differences between patients and controls during self- and other-reflection processing.
Results
Behavior data indicated that healthy controls had a typical SRM bias that was absent in the schizophrenia patients. ERP comparison between groups showed that the schizophrenia patients presented smaller voltages in both self- and other-reflection conditions in the 160–260 ms (P2 component) and 800–1200 ms (positive slow wave) time windows over the pre/frontal cortex. Furthermore, the N2 amplitudes (270–380 ms) differed between self- and other-reflection conditions in patients but not in normal controls. More importantly, we found that the P3 amplitudes in the parietal cortex correlated significantly with the SRM bias score in the patients (r = –0.688).
Conclusions
These results provide comprehensive and direct electrophysiological evidence for self- and other-reflective dysfunction in schizophrenia patients and contribute to our understanding of the underlying neural substrates of the abolished SRM effect in schizophrenia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.