Sample collection and field studies of sea ice take place under harsh conditions which, combined with the logistical difficulties and high cost of voyages to the polar regions, limits the abilities of researchers to determine its properties. Observations of laboratory-grown sea ice can help quantify important sea-ice properties and incorporate them into numerical models. The growth of laboratory sea ice requires experimental set-ups that consider the complexity of sea-ice growth. Regulation and monitoring of environmental variables allow for growth and melt conditions to be controlled, manipulated and reproduced. Facilities thus vary widely because of differing research objectives. This paper presents a summary of some of the published sea-ice laboratories that study the physical properties of sea ice and an overview of their major design considerations, such as tank size, freezing method and instrumentation. It also discusses how these design considerations were implemented in the set-up of the new sea-ice growth laboratory at the Marine and Antarctic Research for Innovation and Sustainability. This paper should guide others in designing their facilities as well as in their understanding of other facilities for results comparison.