Modelling malaria with consistency necessitates the introduction of at least two families of interconnected processes. Even in a Markovian context the simplest fully stochastic model is intractable and is usually transformed into a hybrid model, by supposing that these two families are stochastically independent and linked only through two deterministic connections. A model closer to the fully stochastic model is presented here, where one of the two families is subordinated to the other and just a unique deterministic connection is required. For this model a threshold theorem can be proved but the threshold level is not the one obtained in a hybrid model. The difference disappears only when the human population size approaches infinity.