We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is known that visual noise added to sinusoidal gratings changes the typical U-shaped threshold curve which becomes flat in log-log scale for frequencies below 10c/deg when gratings are masked with white noise of high power spectral density level. These results have been explained using the critical-band-masking (CBM) model by supposing a visual filter-bank of constant relative bandwidth. However, some psychophysical and biological data support the idea of variable octave bandwidth. The CBM model has been used here to explain the progressive change of threshold curves with the noise mask level and to estimate the bandwidth of visual filters. Bayesian staircases were used in a 2IFC paradigm to measure contrast thresholds of horizontal sinusoidal gratings (0.25-8 c/deg) within a fixed Gaussian window and masked with one-dimensional, static, broadband white noise with each of five power density levels. Raw data showed that the contrast threshold curve progressively shifts upward and flattens out as the mask noise level increases. Theoretical thresholds from the CBM model were fitted simultaneously to the data at all five noise levels using visual filters with log-Gaussian gain functions. If we assume a fixed-channel detection model, the best fit was obtained when the octave bandwidth of visual filters decreases as a function of peak spatial frequency.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.