We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fractional Brownian motion is a continuous-time zero mean Gaussian process with stationary increments. It has gained much attention in empirical finance and asset pricing. For example, it has been used to model the time series of volatility and interest rates. This chapter first introduces the basic properties of fractional Brownian motions and then reviews the statistical models driven by the fractional Brownian motions that have been used in financial econometrics such as the fractional Ornstein–Uhlenbeck model and the fractional stochastic volatility models. We also review the parameter estimation methods proposed in the literature. These methods are based on either continuous-time observations or discrete-time observations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.