Continuous functions on the unit interval are relatively tame from the logical and computational point of view. A similar behaviour is exhibited by continuous functions on compact metric spaces equipped with a countable dense subset. It is then a natural question what happens if we omit the latter ‘extra data’, i.e., work with ‘unrepresented’ compact metric spaces. In this paper, we study basic third-order statements about continuous functions on such unrepresented compact metric spaces in Kohlenbach’s higher-order Reverse Mathematics. We establish that some (very specific) statements are classified in the (second-order) Big Five of Reverse Mathematics, while most variations/generalisations are not provable from the latter, and much stronger systems. Thus, continuous functions on unrepresented metric spaces are ‘wild’, though ‘more tame’ than (slightly) discontinuous functions on the reals.