We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study a monotone process maintenance model for a multistate system with k working states and ℓ failure states. By making different assumptions, we can apply the model to a multistate deteriorating system as well as to a multistate improving system. We show that the monotone process model for a multistate system is equivalent to a geometric process model for a two-state system. Then, for both the deteriorating and the improving system, we analytically determine an optimal replacement policy for minimizing the long-run average cost per unit time.
In this paper, an inspection–repair–replacement (IRR) model for a deteriorating system with unobservable state is studied. Assume that the system state can only be diagnosed by inspection and an inspection is imperfect. After inspection, if the system is diagnosed as being in a down state, a minimal repair will be undertaken, otherwise we do nothing. Assume further that the system lifetime is a random variable having increasing failure rate. A feasible IRR policy is studied. An algorithm is then suggested for determining an optimal feasible IRR policy for minimizing the long-run average cost per unit time after a finite-step search.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.