We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hereditary haemorrhagic telangiectasia is an inherited disorder characterised by vascular dysplasia that leads to the development of arteriovenous malformations. Pulmonary arteriovenous malformations occur in approximately 30% of patients with haemorrhagic telangiectasia. Given the complex characteristics of haemorrhagic telangiectasia lesions, the application of three-dimensional fusion imaging holds significant promise for procedural guidance and decrease in contrast and radiation dosing. We reviewed all patients who underwent transcatheter approach for pulmonary arteriovenous malformation occlusion with fusion image guidance from June 2018 to September 2023 from a single centre. A total of nine cases with haemorrhagic telangiectasia and transcatheter occlusion of pulmonary arteriovenous malformations using fusion imaging were identified. Five (56%) were male, mean age at procedure was 15.7 years (10–28 years) and mean number of pulmonary arteriovenous malformations intervened was three per patient (1–7). Two of the cases were complex repeat embolisations. The mean fluoroscopy time was 40.6 min (10.7–68.8 min), with mean contrast dose of 28.8 mL (11–60 mL; mean of 0.51 mL/kg) and mean radiation dose of 66.3 mGy (25.6–140 mGy; mean of 40.5 mGy/m2). There were no complications reported during the procedures, with no additional interventions necessary. Fusion imaging in pulmonary arteriovenous malformations embolisation for patients with haemorrhagic telangiectasia is feasible and has the potential to reduce contrast and radiation doses. To our knowledge, we describe the lowest radiation and contrast doses per patient using fusion imaging technology reported in the literature to date.
A 10-year-old female with heterotaxy-asplenia and complex CHD developed pulmonary arteriovenous malformations with associated cyanosis after Fontan completion. She underwent orthotopic heart transplantation, but her pulmonary arteriovenous malformations persisted with progressive worsening cyanosis. Elective transcatheter left pulmonary artery embolisation was performed 2 years post-transplant, which successfully normalised her oxygen saturation without a significant increase in pulmonary artery pressure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.