This paper generalizes the p* model for dichotomous social network data (Wasserman & Pattison, 1996) to the polytomous case. The generalization is achieved by transforming valued social networks into three-way binary arrays. This data transformation requires a modification of the Hammersley-Clifford theorem that underpins the p* class of models. We demonstrate that, provided that certain (non-observed) data patterns are excluded from consideration, a suitable version of the theorem can be developed. We also show that the approach amounts to a model for multiple logits derived from a pseudo-likelihood function. Estimation within this model is analogous to the separate fitting of multinomial baseline logits, except that the Hammersley-Clifford theorem requires the equating of certain parameters across logits. The paper describes how to convert a valued network into a data array suitable for fitting the model and provides some illustrative empirical examples.