We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Neurosurgery may involve significant blood loss and frequently requires allogeneic red blood cell (RBC) transfusion. Preoperative recombinant erythropoietin (EPO) may be used to improve erythroid status and recovery, and used either alone or in combination with preoperative autologous donation (PAD) it may reduce exposure to allogeneic RBC. We wished to study the use of EPO with and without PAD and the risk of RBC transfusion in neurosurgery.
Methods
Using a retrospective case-control design, 57 patients who received EPO preoperatively were matched 2:1 for age, sex, year of surgery, and International Classification of Diseases code most responsible for surgery (three were excluded because of stringent matching criteria, leaving 54 cases and 108 comparison subjects). Thirty-two cases participated in PAD. Medical and anesthetic records as well as laboratory investigations were reviewed and extracted.
Results
Allogeneic RBC exposure was identical for EPO cases and comparison subjects (18.5%). Concomitant PAD and EPO did not reduce allogeneic RBC exposure (21.9%), and resulted in a greater number of RBC units transfused. Last recorded hemoglobin levels suggested that autologous RBCs were not more liberally used. Patients who engaged in PAD and EPO suffered from iatrogenic anemia. A significant proportion (58.6%) of the autologous RBCs was ultimately not used and discarded.
Conclusion
Further research is needed to determine the efficacy of EPO in neurological surgery. PAD does not appear to reduce the risk of allogeneic RBC transfusion, despite concomitant EPO. Indeed, PAD resulted in iatrogenic anemia and increased transfusion requirements. The cost-effectiveness of blood conservation efforts in neurosurgery deserves additional research.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.