We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper solves the rational noncommutative analogue of Hilbert’s 17th problem: if a noncommutative rational function is positive semidefinite on all tuples of Hermitian matrices in its domain, then it is a sum of Hermitian squares of noncommutative rational functions. This result is a generalisation and culmination of earlier positivity certificates for noncommutative polynomials or rational functions without Hermitian singularities. More generally, a rational Positivstellensatz for free spectrahedra is given: a noncommutative rational function is positive semidefinite or undefined at every matricial solution of a linear matrix inequality
$L\succeq 0$
if and only if it belongs to the rational quadratic module generated by L. The essential intermediate step toward this Positivstellensatz for functions with singularities is an extension theorem for invertible evaluations of linear matrix pencils.
In [12]. T. Scanlon proved a quantifier elimination result for valued D-fields in a three-sorted language by using angular component functions. Here we prove an analogous theorem in a different language which was introduced by F. Delon in her thesis. This language allows us to lift the quantifier elimination result to a one-sorted language by a process described in the Appendix. As a byproduct, we state and prove a “positivstellensatz” theorem for the differential analogue of the theory of real-series closed fields in the valued D-field setting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.