This work examines the interesting phenomenon of the generation of harmonics by non-breaking waves over permeable submerged obstacles. Nine model geometries, each with six different porosities, from 0.421 to 0.912, were considered to examine the effects of model width, porosity, and submergence depth on harmonic generation. The results revealed coupled effects on harmonic generation. A modified Ursell number was proposed to analyze experimental data. Almost no harmonic generation occurs at a modified Ursell number of less than five and/or a model width to wavelength ratio of over 1.6. After harmonics have been generated, wave profiles become dimpled, and the energy of the fundamental mode is transferred to higher-frequency components. Furthermore, the higher harmonics become more pronounced as the models widen, the depth of submergence becomes shallower, and model porosity declines.