Although usually shown in embryology textbooks, the presence of the fifth pair of pharyngeal arch arteries has long been controversial. To the best of our knowledge, six pairs of bilaterally symmetrical arteries developing within the pharyngeal arches are yet to be found in any mammalian or avian species. Collateral channels between the distal ends of the fourth and sixth arch arteries, in contrast, have been found in up to half of all developing mouse embryos. In only one human embryo, again to the best of our knowledge, has a channel been found that extends from the aortic sac to the dorsal aorta, and hence qualifies as an arch artery. Despite these confounding factors in terms of the developmental heritage of the fifth arch arteries, the purported channels are invoked with increasing frequency to describe various lesions discovered in the setting of the congenitally malformed heart. Persistence of the artery of the fifth arch was initially proposed to explain double-barrelled aorta. It was subsequently proposed to account for various systemic-to-pulmonary channels feeding the pulmonary circulation in the setting of pulmonary atresia. It has also been claimed to persist so as to explain abnormal branching of the brachiocephalic arteries from the aortic arch. In the light of the ongoing doubts concerning the existence of the arteries of the fifth arch themselves, we have reviewed the various descriptions of purported fifth arch arteries within the world literature. We have then sought to validate the descriptions on the basis of our own understanding of development, for this purpose providing images of the remoulding arch arteries in the mouse so as to substantiate our conclusions. While accepting that our own interpretations are speculative, we suggest that more convincing alternative explanations can be advanced to account for the majority of lesions currently interpreted on the basis of persistence of the arteries of the fifth arches. Although the interpretations do not necessarily change the therapeutic approaches to the channels, appropriate description is important in terms of their classification.