We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this study was to develop the patient-specific quality control (QC) process by most commonly used dosimeters in Bangladesh and recommend a suitable passing rate for QC, irrespective of the dosimetric tools used.
Materials and methods
Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans of five head-and-neck (HN) and five prostate patients were selected for the patient-specific QC. These plans were generated using the Eclipse TPS v11·0 (Varian Medical Systems, Inc., Palo Alto, CA, USA) 6 MV X-ray from a Varian TrueBeam linear accelerator (Varian Medical Systems, Inc.) for each case. Each IMRT and VMAT plans were measured by two-dimensional (2D) ion chamber arrays (I’matriXX) and electronic portal imaging devices (EPID), respectively. The passing rates of the dosimetric tools were calculated using criteria of 3%/3 mm.
Results
The average passing rates (±SD) of I’matriXX for prostate and HN were 97·9±0·76 and 98·88±0·24, respectively. For VMAT verification, the average passing rates of EPID for prostate for arc1 and arc2 were 96·15±0·49 and 97·8±0·70, respectively; similarly, for HN the rates were 97·85±0·63 and 97·2±0·56, respectively.
Conclusion
The results showed that both the dosimeters can be used in patient-specific QC, although the EPID-based IMRT and VMAT QC is more advantageous in terms of time-saving and ease of use. Hence, for patient-specific QC, one can use the ion chamber arrays (I’matriXX) or EPID in hospital, but the systems need to be cross-checked.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.