We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Earth is embedded in the solar wind, this ever-streaming extremely tenuous ionized gas emanating from the Sun. It is the geomagnetic field which inhibits the solar wind plasma to directly impinge upon the terrestrial atmosphere. It is also the geomagnetic field which moderates and controls the entry of energetic particles of cosmic and solar origin into the atmosphere. During geomagnetic polarity transitions the terrestrial magnetic field decays down to about 10% of its current value. Also, the magnetic field topology changes from a dipole dominated structure to a multipole dominated topology. What happens to the Earth system during such a polarity transition, that is, during episodes of a weak transition field? Which modifications of the configuration of the terrestrial magnetosphere can be expected? Is there any influence on the atmosphere from the intensified particle bombardment? What are the possible effects on the biosphere? Is a polarity transition another example of a cosmic cataclysm? A review is provided on the current understanding of the problem. A first, illustrating model is also discussed to outline the complexity of any biospheric reaction on polarity transitions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.