Sixteen Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 28-day experimental periods and a 4 ✕ 2 factorial arrangement of treatments to evaluate the effects of dietary nitrogen (N) source on dry-matter (DM) intake, diet digestibility, milk production, blood metabolite concentrations and N utilization. Experimental treatments consisted of two silages prepared from timothy and meadow fescue swards fertilized with either 52 or 104 kg N per ha (SL and SH, respectively) offered ad libitum supplemented with one of four concentrate supplements offered at 10 kg/day. A basal concentrate (control) was formulated from (g/kg on an air-dry basis) barley (307), oats (460), molassed sugar-beet pulp (200) and vitamins and minerals (33). Three isonitrogenous concentrates were prepared by replacement of basal concentrate ingredients (g/kg) with urea (14·4), wheat-gluten meal (WGM; 57·2) and heat-moisture treated mechanically expelled rapeseed cake (RSC; 188), respectively. Harvesting of secondary growths receiving higher applications of fertilizer N increased silage N content (19·2 and 23·6 g/kg DM, for SL and SH, respectively) but decreased water-soluble carbohydrate concentrations (respective values 149 and 93 g/kg DM). Increases in N fertilizer had no effect on silage DM intake, output of energy-corrected milk, milk fat or milk protein secretion, while provision of additional N in concentrate supplements improved all of these parameters. However, the magnitude of silage DM intake responses to additional N in concentrates was higher (P < 0·05) for SL than SH silage-based diets. Increases in dietary N content derived from silage or inclusion of urea, WGM or RSC in concentrate supplements led to a decline in the proportion of N intake secreted in milk. Relative to N derived from silage or urea, WGM and RSC supplements had beneficial effects on milk production. Both the quantity and quality of dietary N sources should be considered in future attempts to improve the efficiency of on-farm N utilization.